Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T16:50:33.397Z Has data issue: false hasContentIssue false

Effect of host plants on predation, prey preference and switching behaviour of Orius albidipennis on Bemisia tabaci and Tetranychus turkestani

Published online by Cambridge University Press:  13 February 2017

Aida Samim Banihashemi
Affiliation:
Faculty of Agriculture, Plant Protection Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Ali Asghar Seraj
Affiliation:
Faculty of Agriculture, Plant Protection Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Fatemeh Yarahmadi*
Affiliation:
Faculty of Agriculture, Department of Plant Protection, Ramin Agriculture and Natural Resources University of Khuzestan, Ahvaz (Molasani), Iran
Ali Rajabpour
Affiliation:
Faculty of Agriculture, Department of Plant Protection, Ramin Agriculture and Natural Resources University of Khuzestan, Ahvaz (Molasani), Iran
*
Get access

Abstract

The anthocorid bug Orius albidipennis Reuter is a generalist predator that feeds on the whitefly Bemisia tabaci Gennadius and the strawberry spider mite Tetranychus turkestani Ugarov & Nikolski in greenhouse crops. There are no previous studies on the potential efficacy of the predatory bug against these pests on greenhouse crops. We report on the efficacy and the prey preference of the predator to control these pests on different host plants under laboratory conditions. In a laboratory experiment, we estimated the predation rates of O. albidipennis at different densities of each prey after 24 h on cucumber and sweet pepper leaves. Predation rates of the predatory bug to T. turkestani and B. tabaci were significantly higher on sweet pepper leaf than on cucumber leaf. We studied the effect of plant species on prey preference and switching of O. albidipennis to B. tabaci and T. turkestani using Manly's α index values and Murdoch's no-switch line, respectively. Our results show that O. albidipennis prefers T. turkestani to B. tabaci on both host plants but its preference for T. turkestani on sweet pepper is significantly greater than on cucumber. Moreover, on sweet pepper, preference values are completely fitted by Murdoch's no-switch line. The findings suggest that morphological defence traits of plants, such as hairy leaves of cucumber, may effectively change prey preference and reduce predation success of O. albidipennis.

Type
Research Paper
Copyright
Copyright © icipe 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, W. S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265268.CrossRefGoogle Scholar
Akramovskaya, E. G. (1978) The biology of some predatory bugs of the family Anthocoridae in the conditions of the Ararat valley in Armenia. Biologicheskii Zhurnal Armenii 31, 959964.Google Scholar
Ashley, J. L. (2003) Toxicity of selected acaricides on Tetranychus urticae Koch (Tetranychidae: Acari) and Orius insidiosus Say (Hemiptera: Anthocoridae) life stages and predation studies with Orius insidiosus. MSc Thesis. Virginia Polytechnic Institute and State University, Virginia, USA. 54 pp.Google Scholar
Breene, R. G., Meagher Jnr, R. L., Nordlund, D. A. and Wang, Y.-T. (1992) Biological control of Bemisia tabaci (Homoptera: Aleyrodidae) in a greenhouse using Chrysoperla rufilabris (Neuroptera: Chrysopidae). Biological Control 2, 914.Google Scholar
Cheng, L. L., Nechols, J. R., Margolies, D. C., Campbell, J. F. and Yang, P. S. (2010) Assessment of prey preference by the mass-produced generalist predator, Mallada basalis (Walker) (Neuroptera: Chrysopidae), when offered two species of spider mites, Tetranychus kanzawai Kishida and Panonychus citri (McGregor) (Acari: Tetranychidae), on papaya. Biological Control 53, 267272.Google Scholar
Chesson, P. L. (1984) Variable predators and switching behavior. Theoretical Population Biology 26, 126.Google Scholar
Chow, A., Chau, A. and Heinz, K. M. (2008) Compatibility of Orius insidiosus (Hemiptera: Anthocoridae) with Amblyseius (Iphiseius) degenerans (Acari: Phytoseiidae) for control of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse roses. Biological Control 44, 259270.Google Scholar
Dehghani Zahedani, M., Sarafrazi, A., Ostovan, H. and Mardi, M. (2011) Population variation of predatory bug Orius albidipennis (Het: Anthocoridae) in different regions of Iran. Journal of Food, Agriculture and Environment 9, 469473.Google Scholar
Dicke, M., Sabelis, W. M. and van den Berg, H. (1989) Does prey preference change as a result of prey species being presented together?: Analysis of prey selection by the predatory mite Typhlodromalus pyri (Acarina: Phytoseiidae). Oecologia 81, 302309.Google Scholar
Eubanks, M. D. and Denno, R. F. (1999) The ecological consequences of variation in plants and prey for an omnivorous insect. Ecology 80, 12531266.CrossRefGoogle Scholar
Evans, E. D. (2008) The role of predator-prey size ratio in determining the efficiency of capture by Anthocoris nemorum and the escape reactions of its prey Acyrthosiphon pisum . Ecological Entomology 1, 8590.CrossRefGoogle Scholar
Hassell, M. P. (1978) The Dynamics of Arthropod Predator–Prey Systems. Princeton University Press, New Jersey, pp. 11–23.Google Scholar
Hossini, M., Ashouri, A., Enkegaard, A., Weisser, W. W., Goldansaz, S. H., Mahalati, M. N. and Sarraf Moayeri, H. R. (2010) Plant quality effects on intraguild predation between Orius laevigatus and Aphidoletes aphidimyza . Entomologia Experimentalis et Applicata 135, 208216.CrossRefGoogle Scholar
Jaworski, C. C., Bompard, A., Genies, L., Amiens-Desneux, E. and Desneux, N. (2013) Preference and prey switching in generalist predator attacking local and invasive alien pests. PLoS One 8 (12), e82231. doi: 10.1371/journal.pone.0082231.Google Scholar
Jeppson, L. R., Keifer, H. H. and Baker, E. W. (1975) Mites Injurious to Economic Plants. University of California Press, Riverside, USA. 614 pp.Google Scholar
Kamali, K., Ostovan, H. and Atamehr, A. (2004) A Catalog of Mites and Ticks (Acari) of Iran. Islamic Azad University Scientific Publication Centre, Tehran, Iran, pp. 43–52.Google Scholar
Klečka, K. (2010) Predation by aquatic insects: species traits and habitat structure mediate predator–prey interactions. MSc thesis, in English. University of South Bohemia, České Budějovice, Czech Republic. 30 pp.Google Scholar
Kousari, A. A. and Kharazi-Pakdel, A. (2006) Prey-preference of Orius albidipennis (Het.: Anthocoridae) on onion thrips and two-spotted spider mite under laboratory conditions. Journal of Entomological Society of Iran 26, 7391.Google Scholar
Krebs, C. J., (1989) Ecological methodology. Harper Collins, New York, pp. 321372.Google Scholar
Krips, O. E., Kleijn, P. W., Willems, P. E. L., Gols, G. J. Z. and Dicke, M. (1999) Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Experimental & Applied Acarology 23, 119131.Google Scholar
Lattin, J. D. (1999) Bionomics of the Anthocoridae. Annual Review of Entomology 44, 207231.Google Scholar
Madadi, H., Enkegaard, A., Brødsgaard, H. F., Kharrazi-Pakdel, A., Ashouri, A. and Mohaghegh-Neishabouri, J. (2009) Interactions between Orius albidipennis (Heteroptera: Anthocoridae) and Neoseiulus cucumeris (Acari: Phytoseiidae): Effects of host plants under microcosm condition. Biological Control 50, 137142.Google Scholar
Manly, B. (1974) A model for certain types of selection experiments. Biometrics 30, 281294. doi:10.2307/2529649.Google Scholar
Montserrat, M., Albajes, R. and Castañé, C. (2000) Functional response of four heteropteran predators preying on greenhouse whitefly (Homoptera: Aleyrodidae) and western flower thrips (Thysanoptera: Thripidae). Environmental Entomology 29, 10751082.Google Scholar
Mossadegh, M. S. and Kocheili, F. (2003) A Semi Descriptive Checklist of Identified Species of Arthropods (Agricultural, Medical, etc.) and Other Pests from Khuzestan, Iran. Shahid Chamran University Press, Ahvaz, Iran. 475 pp.Google Scholar
Murdoch, W. W. (1969) Switching in general predators: Experiments on predator specificity and stability of prey populations. Ecological Monographs 39, 335354.Google Scholar
Murdoch, W. W. and Marks, J. R. (1973) Predation by coccinellid beetles: Experiments on switching. Ecology 54, 160167.Google Scholar
Nordlund, D. A. and Morrison, R. K. (1990) Handling time, prey preference, and functional response for Chrysoperla rufilabris in the laboratory. Entomologia Experimentalis et Applicata 57, 237242.CrossRefGoogle Scholar
Oaten, A. and Murdoch, W. W. (1975) Switching, functional response, and stability in predator–prey systems. The American Naturalist 109, 299318.Google Scholar
Pericart, J. (1972) Hémiptères, Anthocoridae, Cimicidae et Microphysidae de L'Ouest–Paléarctique. Faune Eur Bassin Méditerranéen 7, 398402.Google Scholar
Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N. and Weis, A. E. (1980) Interaction among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Entomology 11, 4165.Google Scholar
Price, P. W., Denno, R. F., Eubanks, M. D., Finke, D. L. and Kaplan, I. (2011) Insect Ecology, Behavior, Populations and Communities. Cambridge University Press, UK. 578 pp.CrossRefGoogle Scholar
Reynolds, P. (2011) The effects of plant gross morphology on the foraging efficiencies of the generalist predators. MSc Thesis. University of Waterloo, Waterloo, Ontario, Canada. 80 pp.Google Scholar
Reynolds, P. G. and Cuddington, K. (2012) Effects of plant gross morphology on predator searching behaviour. Environmental Entomology 41, 516522. doi: 10.1603/EN11179.Google Scholar
Sobhy, I.S., Sarhan, A.A., Shoukry, A.A. El-Kady, G. A., Mandour, N. S. and Reitz, S. R. (2010) Development, consumption rates and reproductive biology of Orius albidipennis reared on various prey. BioControl 55, 753765.Google Scholar
SPSS (2007) SPSS Inc. Released 2007. SPSS for Windows, Version 16.0. SPSS Inc., Chicago.Google Scholar
Stansly, P. A. and Natwick, E. T. (2010) Integrated systems for managing Bemisia tabaci in protected and open field agriculture, pp. 467497. In Bemisia: Bionomics and Management of a Global Pest (edited by Stansly, P. A. and Naranjo, S.E.). Springer, Netherlands.Google Scholar
Tommasini, M. G. and Nicoli, G. (1996) Evaluation of Orius spp. as biological control agents of thrips pests: Further experiments on the existence of diapause in Orius laevigatus . IOBC/WPRS Bulletin 19, 183186.Google Scholar
Tschnaz, B., Bersier, L. F. and Basher, S. (2007) Functional response: a question of alternative prey and predator density. Ecology 88, 13001308.CrossRefGoogle Scholar
van Baalen, M., Krivan, V., van Rijin, P. C. J. and Sabelis, M. W. (2001) Alternative food, switching predators, and the presistance of predator-prey systems. American Naturalist 157, 512524.Google Scholar
Yasunaga, T. (1997) The flower bug genus Orius Wolff (Heteroptera: Anthocoridae) from Japan and Taiwan, Part II. Applied Entomology and Zoology 32, 379386.Google Scholar