Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-20T17:42:35.794Z Has data issue: false hasContentIssue false

Distance orientation of biting flies to their hosts

Published online by Cambridge University Press:  19 September 2011

James F. Sutcliffe
Affiliation:
Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
Get access

Abstract

In the first section of this review, the stimuli involved in orienting biting flies to their hosts from a distance are discussed under the following headings: (1) Appetitive search—driven by endogenous rhythms and hunger. (2) Activation—the switchover from search behaviour to active host-location brought about in the insect by host-originating stimuli including, depending on species, carbon dioxide, visual contact, and specific host odours. (3) Attraction—the process of active host-location through which the insect comes into the immediate vicinity of the host. This relies on host-originating stimuli including visual contact and olfactory stimuli such as carbon dioxide, volatiles such as acetone, and specific, usually very potent host-related odours.

The second part of this review discusses the properties of the odour plumes biting flies rely on to locate the host. Possible methods of host-location using air-borne odour plumes are presented and the “positive anemotaxis” model based on moth pheromone work is stressed.

Résumé

La première section de ce compte rendu examine les stimulus qui dirigent de loin les mouches piqûantes vers leurs hôtes et les présente sour les titres suivants: (1) La recherche de l'hôte—commandée par des forces appetitives, par les rythmes endogènes et par la faim. (2) L'activation—l'arret de la recherche de l'hôte par vole non-dirigé et le début de la localization active de l'hôte, un comportement suscité par les stimulus originant de l'hôte. Ceux-ci, dépendant de l'espèce de mouche, peuvent inclure le gaz carbonique, la vue de l'hote et des odeurs specifiques provenant de l'hôte. (3) L'attraction—la procédure de la localization active par laquelle l'insecte se rapproche très près de l'hôte. Elle dépend de stimulus originant de l'hôte: le contact visuel, le gaz carbonique, les produits chimiques volatils comme l'acétone par exemple, et des odours spécifiques et puissants liées a l'hôte.

La seconde partie de ce compte rendue considère les propriétés du panache d'odeur avec lequel les mouches piqûantes repèrent leurs hôtes. Des façons emportés par la vent sont suggérées en entrant en ligne de compte la modèle de “anemotaxis” positif, trouvé dans la littérature sur les pheromones des papillons de nuit.

Type
Symposium V: Host-seeking Mechanisms of Arthropods of Medical and Veterinary Importance
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acree, F. Jr, Turner, R. B., Gouck, H. K., Beroza, M. and Smith, N. (1968) L-lactic acid: A mosquito attractant isolated from humans. Science 161, 13461347.CrossRefGoogle ScholarPubMed
Allan, S. A., Day, J. F. and Edman, J. D. (1987) Visual ecology of biting flies. A. Rev. Ent. 32, 297316.CrossRefGoogle ScholarPubMed
Allan, S. A. and Stoftolano, J. G. Jr (1986a) Effects of background contrast on visual attraction and orientation of Tabanus nigrovittatus (Diptera: Tabanidae). Environ. Ent. 15, 689694.CrossRefGoogle Scholar
Allan, S. A. and Stoffolano, J. G. Jr (1986b) The effects of hue and intensity on visual attraction of adult Tabanus nigrovittatus (Diptera: Tabanidae). J. Med. Ent. 23, 8391.CrossRefGoogle Scholar
Askew, R. R. (1971) Parasitic Insects. American Elsevier Pub. Co., New York.Google Scholar
Bidlingmayer, W. L. and Hem, D. G. (1979) Mosquito (Diptera: Culicidae) flight behaviour near conspicuous objects. Bull. Ent. Res. 69, 691700.CrossRefGoogle Scholar
Bidlingmayer, W. L. and Hem, D. G. (1980) The range of visual attraction and the effect of visual attractants upon mosquito (Diptera: Culicidae) flight. Bull. ent. Res. 70, 321342.CrossRefGoogle Scholar
Bracken, G. K., Hanec, W. and Thorsteinson, A. J. (1962) The orientation of horse flies and deer flies (Tabanidae: Diptera). II. The role of some visual factors in the attractiveness of decoy silhouettes. Can. J. Zool. 40, 685695.CrossRefGoogle Scholar
Bradbury, W. C. and Bennett, G. F. (1974) Behaviour of adult Simuliidae (Diptera). I. Response to colour and shape. Can. J. Zool. 52, 251259.CrossRefGoogle Scholar
Brady, J. (1970) Characteristics of spontaneous activity in tsetse flies. Nature 228, 286287.CrossRefGoogle ScholarPubMed
Brady, J. (1972) Spontaneous circadian components of tsetse fly activity. J. Insect Physiol. 18, 471484.CrossRefGoogle ScholarPubMed
Browne, S. M. and Bennett, G. F. (1980) Color and shape as mediators of host-seeking responses of simuliids and tabanids (Diptera) in the Tantramar marshes, New Brunswick, Canada. J. Med. Ent. 17, 5862.CrossRefGoogle Scholar
Bursell, E. (1984a) Observations on the orientation of tsetse flies (Glossina pallidipes) to wind-borne odours. Physiol. Ent. 9, 133137.CrossRefGoogle Scholar
Bursell, E. (1984b) Effects of host odour on the behaviour of tsetse. Insect Sci. Applic. 5, 345349.Google Scholar
Cardé, R. T. (1984) Chemo-orientation in flying insects. In: Chemical Ecology of Insects (Edited by Bell, W. J. and Cardé, R. T.), pp. 111124. Chapman and Hall Ltd., London.CrossRefGoogle Scholar
Compton-Knox, P. and Hayes, K. L. (1972) Attraction of Tabanus spp. (Diptera: Tabanidae) to traps baited with carbon dioxide and other chemicals. Environ. Ent. 1, 323326.CrossRefGoogle Scholar
David, C. T., Kennedy, J. S., Ludlow, A. R., Perry, J. N. and Wall, C. (1982) A reappraisal of insect flight towards a distant point source of wind-borne odor. J. Chem. Ecol. 8, 12071215.CrossRefGoogle ScholarPubMed
Davis, E. E. (1984a) Regulation of sensitivity in peripheral chemoreceptor systems for host-seeking behaviour by a hemolymph-borne factor in Aedes aegypti. J. Insect Physiol. 30, 179183.CrossRefGoogle Scholar
Davis, E. E. (1984b) Development of lactic acid-receptor sensitivity and host-seeking behavior in newly emerged female Aedes aegypti mosquitoes. J. Insect Physiol. 30, 211215.CrossRefGoogle Scholar
Davis, E. E. and Sokolove, P. G. (1976) Lactic acid sensitive receptors on the antennae of the mosquito, Aedes aegypti. J. Comp. Physiol. 105, 4354.CrossRefGoogle Scholar
Daykin, P. N., Kellogg, F. E. and Wright, R. H. (1965) Host-finding and repulsion in Aedes aegypti. Can. Ent. 97, 239263.CrossRefGoogle Scholar
Dethier, V. G. (1976) The Hungry Fly. Harvard Univ. Press, Cambridge, Mass.Google Scholar
Elkinton, J. S. and Cardé R. T. (1984) Odor dispersion. In: Chemical Ecology of Insects. (Edited by Bell, W. J. and Cardé, R. T.), pp. 7391. Chapman and Hall Ltd., London.CrossRefGoogle Scholar
Fallis, A. M., Bennett, G. F., Griggs, G. and Allen, T. (1967) Collecting Simulium venustum females in fan traps and on silhouettes with the aid of carbon dioxide. Can. J. Zool. 45. 10111017.CrossRefGoogle ScholarPubMed
Fallis, A. M. and Raybould, J. N. (1975) Response of two African simuliids to silhouettes and carbon dioxide. J. Med. Ent. 12, 349351.CrossRefGoogle ScholarPubMed
Fallis, A. M. and Smith, S. M. (1964) Ether extracts from birds and CO2 as attractants for some ornithophilic simuliids. Can. J. Zool. 42, 723730.CrossRefGoogle Scholar
Farkas, S. R. and Shorey, H. H. (1972) Chemical trail-following by flying insects: a mechanism for orientation to a distant odor source. Science 178, 6768.CrossRefGoogle ScholarPubMed
Fredeen, F. J. H. (1961) A trap for studying the attacking behaviour of black flies, Simulium arcticum Mall. Can. Ent. 93, 7378.CrossRefGoogle Scholar
Friend, W. G. and Smith, J. J. B. (1977) Factors affecting feeding by blood-sucking insects. A. Rev. Ent. 22, 309331.CrossRefGoogle Scholar
Gibson, G. and Brady, J. (1985) “Anemotactic” flight paths of tsetse flies in relation to host odour: a preliminary video study in nature of the response to loss of odour. Physiol. Ent. 10, 395406.CrossRefGoogle Scholar
Gillies, M. T. (1980) The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae). Bull. ent. Res. 70, 525532.CrossRefGoogle Scholar
Hall, D. R., Beevor, P. S., Cork, A., Nesbitt, B. F. and Vale, G. A. (1984) l-octen-3-ol: A potent olfactory stimulant and attractant for tsetse isolated from cattle odours. Insect Sci. Applic. 5, 335339.Google Scholar
Hassanali, A., MacDowell, P. G., Owaga, M. L. A. and Saini, R. K. (1986) Identification of tsetse attractants from excretory products of a wild host animal, Syncerus caffer. Insect Sci. Applic. 7, 59.Google Scholar
Holbrook, F. R. (1985) A comparison of three traps for adult Culicoides variipennis (Ceratopogonidae). J. Am. Mosq. Control Assoc. 1, 379381.Google ScholarPubMed
Jones, M. D. R. (1976) Persistence in continuous light of a circadian rhythm in the mosquito Culex pipiens fatigans Wied. Nature 261, 491492.CrossRefGoogle ScholarPubMed
Jones, M. D. R. and Gubbins, S. J. (1978) Changes in the circadian flight activity of the mosquito Anopheles gambiae in relation to insemination, feeding and oviposition. Physiol. Ent. 3, 213220.CrossRefGoogle Scholar
Kellogg, F. E. and Wright, R. H. (1962) The guidance of flying insects. V. Mosquito attraction. Can. Ent. 94, 10091016.CrossRefGoogle Scholar
Kennedy, J. S. (1939) The visual responses of flying mosquitoes. Proc. Zool. Soc. London 109, 221242.Google Scholar
Kennedy, J. S. (1983) Zigzagging and casting as a programmed response to wind-borne odour: A review. Physiol. Ent. 8, 109120.CrossRefGoogle Scholar
Khan, A. A. and Maibach, H. I. (1966) Quantification of the effect of several stimuli on landing and probing by Aedes aegypti. J. Econ. Ent. 59, 902905.CrossRefGoogle Scholar
Lillie, T. H., Jones, R. H., Marquardt, W. C. and Simpson, R. G. (1979) A lightweight, portable and inexpensive baffle trap for collecting Culicoides variipennis (Diptera: Ceratopogonidae). Mosq. News 39, 675677.Google Scholar
Mclver, S. B. (1974) Fine structure of antennal grooved pegs of the mosquito, Aedes aegypti. Cell Tiss. Res. 153, 327337.Google Scholar
Miller, J. R. and Strickler, K. L. (1984) Finding and accepting host plants. In: Chemical Ecology of Insects (Edited by Bell, W. J. and Cardé, R. T.), pp. 127157. Chapman and Hall Pub. Co.CrossRefGoogle Scholar
Murlis, J. and Jones, C. D. (1981) Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol. Ent. 6, 7186.CrossRefGoogle Scholar
Nayar, J. K. and Sauerman, D. M. (1971) The effect of light regimes on the circadian rhythm of flight activity in the mosquito Aedes taeniorhynchus. J. Exp. Biol. 54, 745756.CrossRefGoogle ScholarPubMed
Nelson, R. L. (1965) Carbon dioxide as an attractant for Culicoides. J. Med. Ent. 2, 5657.CrossRefGoogle Scholar
Owaga, M. L. A. (1984) Preliminary observation of the efficacy of olfactory attractants derived from wild hosts of tsetse. Insect Sci. Applic. 5, 8790.Google Scholar
Owaga, M. L. A. (1985) Observations of the efficacy of buffalo urine as a potent olfactory attractant for Glossina pallidipes Austen. Insect Sci. Applic. 6, 561566.Google Scholar
Peschken, D. and Thorsteinson, A. J. (1965) Visual orientation of black flies (Simuliidae: Diptera) to colour, shape and movement of targets. Ent. Exp. Appl. 8, 282288.CrossRefGoogle Scholar
Price, G. D., Smith, N. and Carlson, D. A. (1979) The attraction of female mosquitoes (Anopheles quadrimaculatus Say) to stored human emanations in conjunction with adjusted levels of relative humidity, temperature, and carbon dioxide. J. Chem. Ecol. 5, 383395.CrossRefGoogle Scholar
Roberts, R. H. (1972) Relative attractiveness of CO2 and a steer to Tabanidae, Culicidae, and Stomoxys calcitrans. Mosq. News 32, 208211.Google Scholar
Saunders, D. S. (1982) Insect Clocks. Pergamon Press, Toronto, Ont.Google Scholar
Schöne, H. (1984) The Spatial Control of Animals and Man. Princeton Univ. Press, Princeton, N.J.Google Scholar
Schreck, C. E., Smith, N., Carlson, D. A., Price, G. D., Haile, D. and Godwin, D. R. (1981) A material isolated from human hands that attracts female mosquitoes. J. Chem. Ecol. 8, 429438.CrossRefGoogle Scholar
Smith, C. N., Smith, N., Gouck, H. K., Weidhaas, D. E., Gilbert, I. H., Mayer, M. S., Smittle, B. J. and Hoffbauer, A. (1970) L-Lactic acid as a factor in the attraction of Aedes aegypti (Diptera: Culicidae) to human hosts. Ann. ent. Soc. Am. 63, 760770.CrossRefGoogle ScholarPubMed
Sutcliffe, J. F. (1986) Black fly host location: a review. Can. J. Zool. 64, 10411053.CrossRefGoogle Scholar
Sutton, O. G. (1947) The problem of diffusion in the lower atmosphere. Quart. J. Roy. Meteorol. Soc. 73, 257281.CrossRefGoogle Scholar
Sutton, O. G. (1953) Micrometeorology. McGraw-Hill Pub. Co., New York.Google Scholar
Taylor, B. and Jones, M. D. R. (1969) The circadian rhythm of flight activity in the mosquito Aedes aegypti (L.): the phase-setting effects of light-on and light-off. J. Exp. Biol. 51, 5970.CrossRefGoogle ScholarPubMed
Thompson, B. H. (1976a) Studies on the attraction of Simulium damnosum s.l. (Diptera: Simuliidae) to its hosts. I. The relative importance of sight, exhaled breath and smell. Tropenmed. Parasit. 27, 455473.Google ScholarPubMed
Thompson, B. H. (1976b) Studies on the attraction of Simulium damnosum s.l. (Diptera: Simuliidae). II. The nature of the substances on the human skin responsible for attractant olfactory stimuli. Tropenmed. Parasit. 27, 8390.Google Scholar
Thorsteinson, A. J., Bracken, B. K. and Tostowaryk, W. (1966) The orientation behaviour of horse flies and deer flies (Tabanidae: Diptera). V. The influence of the number and inclination of reflecting surfaces on attractiveness to tabanids of glossy black polyhedra. Can. J. Zool. 44, 275279.CrossRefGoogle Scholar
Vale, G. A. (1974) The responses of tsetse flies (Diptera: Glossinidae) to mobile and stationary baits. Bull. ent. Res. 64, 545588.CrossRefGoogle Scholar
Vale, G. A. (1980) Field studies of the responses of tsetse flies (Glossinidae) and other Diptera to carbon dioxide, acetone and other chemicals. Bull. ent. Res 70, 563570.CrossRefGoogle Scholar
Vale, G. A. (1984) The responses of Glossina (Glossinidae) and other Diptera to odour plumes in the field. Bull. ent. Res. 74, 143152.CrossRefGoogle Scholar
Vale, G. A. and Hall, D. R. (1985a) The role of l-octen-3-ol, acetone, and carbon dioxide in the attraction of tsetse flies, Glossina spp. (Diptera: Glossinidae) to ox odour. Bull. ent. Res. 75, 209217.CrossRefGoogle Scholar
Vale, G. A. and Hall, D. R. (1985b) The use of l-octen-3-ol, acetone and carbon dioxide to improve baits for tsetse flies, Glossina spp. (Diptera: Glossinidae). Bull. ent. Res. 75, 219231.CrossRefGoogle Scholar
Vale, G. A., Hargrove, J. W., Cockbill, G. F. and Phelps, R. J. (1986) Field trials of bait to control populations of Glossina morsitans morsitans Westwood and G. pallidipes Austen (Diptera: Glossinidae). Bull. ent. Res. 76, 179193.CrossRefGoogle Scholar
Warnes, M. L. and Finlayson, L. H. (1985a) Responses of the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), to carbon dioxide and host odours. I. Activation. Bull. ent. Res. 75, 519527.CrossRefGoogle Scholar
Warnes, M. L. and Finlayson, L. H. (1985b) Responses of the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), to carbon dioxide and host odours. II. Orientation. Bull. ent. Res. 75, 717727.CrossRefGoogle Scholar
Warnes, M. L. and Finlayson, L. H. (1986) Electroantennogram responses of the stable fly, Stomoxys calcitrans, to carbon dioxide and other odours. Physiol. Ent. 11, 469473.CrossRefGoogle Scholar
Wright, R. H. (1958) The olfactory guidance of flying insects. Can. Ent. 90, 8189.CrossRefGoogle Scholar