Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T01:22:19.272Z Has data issue: false hasContentIssue false

Diagnosis and molecular detection of Paenibacillus larvae, the causative agent of American foulbrood in honey bees in Saudi Arabia

Published online by Cambridge University Press:  30 June 2017

Mohammad Javed Ansari*
Affiliation:
Bee Research Chair, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, PO Box 2460, Kingdom of Saudi Arabia
Ahmad Al-Ghamdi
Affiliation:
Bee Research Chair, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, PO Box 2460, Kingdom of Saudi Arabia
Adgaba Nuru
Affiliation:
Bee Research Chair, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, PO Box 2460, Kingdom of Saudi Arabia
Ashraf Mohamed Ahmed
Affiliation:
Department of Zoology, College of Science, King Saud University, Riyadh 11451, PO Box 2455, Kingdom of Saudi Arabia
Tahany H. Ayaad
Affiliation:
Department of Zoology, College of Science, King Saud University, Riyadh 11451, PO Box 2455, Kingdom of Saudi Arabia
Khalid Ali Khan
Affiliation:
Bee Research Chair, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, PO Box 2460, Kingdom of Saudi Arabia
Noori Al-Waili
Affiliation:
New York Medical Care For Nephrology, Richmond Hill, NY 11418, USA
*
Get access

Abstract

Apis mellifera jemenitica, the only indigenous honey bee race of Saudi Arabia, is well adapted to the harsh local environmental conditions. A large-scale field survey was conducted to screen major Saudi Arabian beekeeping locations for infection by Paenibacillus larvae. Paenibacillus larvae is one of the major bacterial pathogens of honey bee broods and is the causative agent of American foulbrood disease. Larvae from samples suspected of infection were collected from different apiaries and homogenized in phosphate-buffered saline. Bacteria were isolated on MYPGP agar medium. Two bacterial isolates, ksuPL3 and ksuPL5 (16S rRNA GenBank accession numbers, KR780760 and KR780761, respectively), were subjected to molecular identification using P. larvae-specific primers. A BLAST sequence analysis revealed that the two isolates were P. larvae with more than 98% sequence identity. This detection of P. larvae in the indigenous honey bee is the first recorded incidence of this pathogen in Saudi Arabia. This study emphasizes the need for the relevant authorities to take immediate steps towards treating and limiting the spread of this disease throughout the country.

Type
Research Paper
Copyright
Copyright © icipe 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Baki, A.-A. S., Mares, M. M., Dkhil, M. A. and Al-Quraishy, S. (2016) First detection of Nosema sp., microsporidian parasites of honey bees (Apis mellifera) in Riyadh city, Saudi Arabia. Journal of King Saud University - Science 28, 396399. doi:10.1016/j.jksus.2016.05.005.CrossRefGoogle Scholar
Abou-Shaara, H. F., Al-Ghamdi, A. A. and Mohamed, A. A. (2012) Tolerance of two honey bee races to various temperature and relative humidity gradients. Environmental and Experimental Biology 10, 133138.Google Scholar
Adgaba, N., Al-Ghamdi, A., Shenkute, A. G., Ismaiel, S., Al-Kahtani, S., Tadess, Y., Ansari, M. J., Wodajo, W.A. and Abdulaziz, M. Q. A. (2014) Socio-economic analysis of beekeeping and determinants of box hive technology adoption in the Kingdom of Saudi Arabia. Journal of Animal and Plant Sciences 24, 18761884.Google Scholar
Alattal, Y. and AlGhamdi, A. (2015) Impact of temperature extremes on survival of indigenous and exotic honey bee subspecies, Apis mellifera, under desert and semiarid climates. Bulletin of Insectology 68, 219222.Google Scholar
Alattal, Y., Al-Ghamdi, A. and Alsharhi, M. (2014) Population structure of the Yemeni honey bee (Apis mellifera jemenitica) entails an urgent conservation strategy in Saudi Arabia. Journal of Entomology 11, 163169.CrossRefGoogle Scholar
Al-Ghamdi, A. A. (1990) Survey of honeybee diseases, pests and predators in Saudi Arabia. MPhil Thesis, University of Wales, Cardiff, United Kingdom. 171 pp.Google Scholar
Al-Ghamdi, A. A., Nuru, A., Khanbash, M. S. and Smith, D. R. (2013) Geographical distribution and population variation of Apis mellifera jemenitica Ruttner. Journal of Apicultural Research 52, 124133.CrossRefGoogle Scholar
Alippi, A. M., Reynaldi, F. J., López, A. C., De Giusti, M. R. and Aguilar, O. M. (2004) Molecular epidemiology of Paenibacillus larvae and incidence of American foulbrood in Argentinean honeys from Buenos Aires province. Journal of Apicultural Research 43, 135143.CrossRefGoogle Scholar
Alqarni, A. S. (1995) Morphometrical and biological studies on the native honeybee race, Apis mellifera L., the Carniolan, A. m. carnica Pollmann and their F1 hybrid. MSc Thesis, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.Google Scholar
Alqarni, A. S., Hannan, M. A., Owayss, A. A. and Engel, M. S. (2011) The indigenous honey bees of Saudi Arabia (Hymenoptera, Apidae, Apis mellifera jemenitica Ruttner): Their natural history and role in beekeeping. ZooKeys 134, 8398.Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403410.CrossRefGoogle ScholarPubMed
Anjum, S. I., Shah, A. H., Kamran Azim, M., Yousuf, M. J., Khan, S. and Khan, S. N. (2015) Prevalence of American foul brood disease of honeybee in north-west Pakistan. Biotechnology and Biotechnological Equipment 29, 659665.CrossRefGoogle Scholar
Ansari, M. J., Al-Ghamdi, A., Nuru, A., Ahmed, A. M., Ayaad, T. H., Al-Qarni, A., Alattal, Y. and Al-Waili, N. (2016) Survey and molecular detection of Melissococcus plutonius, the causative agent of European Foulbrood in honeybees in Saudi Arabia. Saudi Journal of Biological Sciences. doi:10.1016/j.sjbs.2016.10.012 Google ScholarPubMed
Ansari, M. J., Al-Ghamdi, A., Nuru, A., Khan, K. A. and Alattal, Y. (2017) Geographical distribution and molecular detection of Nosema ceranae from indigenous honey bees of Saudi Arabia. Saudi Journal of Biological Sciences. doi:10.1016/j.sjbs.2017.01.054 CrossRefGoogle ScholarPubMed
Bakonyi, T., Derakhshifar, I., Grabensteiner, E. and Nowotny, N. (2003) Development and evaluation of PCR assays for the detection of Paenibacillus larvae in honey samples: comparison with isolation and biochemical characterization. Applied and Environmental Microbiology 69, 15041510.CrossRefGoogle ScholarPubMed
Bamrick, J. F. (1967) Resistance to American foulbrood in honey bees: VI. Spore germination in larvae of different ages. Journal of Invertebrate Pathology 9, 3034.CrossRefGoogle Scholar
Bassi, S., Formato, G., Milito, M., Trevisiol, K., Salogni, C. and Carra, E. (2015) Phenotypic characterization and ERIC–PCR based genotyping of Paenibacillus larvae isolates recovered from American foulbrood outbreaks in honey bees from Italy. Veterinary Quarterly 35, 2732.CrossRefGoogle ScholarPubMed
Brødsgaard, C. J., Hansen, H. and Ritter, W. (2000) Progress of Paenibacillus larvae infection in individually inoculated honey bee larvae reared singly in vitro, in micro colonies, or in full-size colonies. Journal of Apicultural Research 39, 1927.CrossRefGoogle Scholar
D'Alessandro, B., Antúnez, K., Piccini, C. and Zunino, P. (2007) DNA extraction and PCR detection of Paenibacillus larvae spores from naturally contaminated honey and bees using spore-decoating and freeze-thawing techniques. World Journal of Microbiology and Biotechnology 23, 593597.CrossRefGoogle Scholar
De Graaf, D. C., Alippi, A. M., Antúnez, K., Aronstein, K. A., Budge, G., De Koker, D., De Smet, L., Dingman, D. W., Evans, J. D., Foster, J. L., Fünfhaus, A., Garcia-Gonzalez, E., Gregorc, A., Human, H., Murray, K. D., Nguyen, B. K., Poppinga, L., Spivark, M., vanEngelsdorp, D., Wilkins, S. and Genersch, E. (2013) Standard methods for American foulbrood research. Journal of Apicultural Research 52, 128.CrossRefGoogle Scholar
De Graaf, D. C., Alippi, A. M., Brown, M., Evans, J. D., Feldlaufer, M., Gregorc, A., Hornitzky, M., Pernal, S. F., Schuch, D. M. T., Titĕra, D., Tomkies, V. and Ritter, W. (2006) Diagnosis of American foulbrood in honey bees: a synthesis and proposed analytical protocols. Letters in Applied Microbiology 43, 583590.CrossRefGoogle Scholar
Djukic, M., Brzuszkiewicz, E., Fünfhaus, A., Voss, J., Gollnow, K., Poppinga, L., Liesegang, H., Garcia-Gonzalez, E., Genersch, E. and Daniel, R. (2014) How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae . PLoS ONE 9, e90914. https://doi.org/10.1371/journal.pone.0090914.CrossRefGoogle ScholarPubMed
Ellis, J. D. and Munn, P. A. (2005) The worldwide health status of honey bees. Bee World 86, 88101.CrossRefGoogle Scholar
Free, J. B. (1993) Insect Pollination of Crops 2nd sub edition. Academic Press Inc., London. 768 pp.Google Scholar
Gallai, N., Salles, J.-M., Settele, J. and Vaissière, B. E. (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics 68, 810821.CrossRefGoogle Scholar
Genersch, E. (2010) American foulbrood in honey bees and its causative agent, Paenibacillus larvae. Journal of Invertebrate Pathology 103, S10S19.CrossRefGoogle Scholar
Genersch, E., Ashiralieva, A. and Fries, I. (2005) Strain- and genotype-specific differences in virulence of Paenibacillus larvae subsp. larvae, a bacterial pathogen causing American foulbrood disease in honey bees. Applied and Environmental Microbiology 71, 75517555.CrossRefGoogle Scholar
Genersch, E., Forsgren, E., Pentikäinen, J., Ashiralieva, A., Rauch, S., Kilwinski, J. and Fries, I. (2006) Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. International Journal of Systematic and Evolutionary Microbiology 56, 501511.CrossRefGoogle ScholarPubMed
Genersch, E., von der Ohe, W., Kaatz, H., Schroeder, A., Otten, C., Büchler, R., Berg, S., Ritter, W., Mühlen, W., Gisder, S., Meixner, M., Liebig, G. and Rosenkranz, P. (2010) The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41, 332352. doi:10.1051/apido/2010014.CrossRefGoogle Scholar
Gordon, R. E., Haynes, W. C. and Pang, C. H. N. (1973) The Genus Bacillus. Agriculture Handbook No. 427. United States Department of Agriculture, Washington DC.Google Scholar
Govan, V. A., Allsopp, M. H. and Davison, S. (1999) A PCR detection method for rapid identification of Paenibacillus larvae . Applied and Environmental Microbiology 65, 22432245.CrossRefGoogle ScholarPubMed
Hamdi, C., Essanaa, J., Sansonno, L., Crotti, E., Abdi, K., Barbouche, N., Balloi, A., Gonella, E., Alma, A., Daffonchio, D., Boudabous, A. and Cherif, A. (2013) Genetic and biochemical diversity of Paenibacillus larvae isolated from Tunisian infected honey bee broods. BioMed Research International 2013, Article ID 479893, 9 pp.CrossRefGoogle ScholarPubMed
Haynes, W. C. (1972) Catalase test; an aid in the identification of Bacillus larvae . American Bee Journal 112, 130131.Google Scholar
Hitchcock, J. D., Stoner, A., Wilson, W. T. and Menapace, D. M. (1979) Pathogenicity of Bacillus pulvifaciens to honey bee larvae of various ages (Hymenoptera: Apidae). Journal of the Kansas Entomological Society 52, 238246.Google Scholar
Hornitzky, M. A. Z. and Clark, S. (1991) Culture of Bacillus larvae from bulk honey samples for the detection of American foulbrood. Journal of Apicultural Research 30, 1316.CrossRefGoogle Scholar
Jukes, T. H. and Cantor, C. R. (1969) Evolution of protein molecules, pp. 21132. In Mammalian Protein Metabolism (edited by Munro, H. N). Academic Press, New York.CrossRefGoogle Scholar
Kostecki, R. (1969) Studies on improvement of control of American foulbrood of the honey bee. Pszczelnicze Zeszyty Naukowe 13, 97135 (In Polish).Google Scholar
Lauro, F. M., Favaretto, M., Covolo, L., Rassu, M. and Bertoloni, G. (2003) Rapid detection of Paenibacillus larvae from honey and hive samples with a novel nested PCR protocol. International Journal of Food Microbiology 81, 195201.CrossRefGoogle ScholarPubMed
Lindström, A., Korpela, S. and Fries, I. (2008) The distribution of Paenibacillus larvae spores in adult bees and honey and larval mortality, following the addition of American foulbrood diseased brood or spore-contaminated honey in honey bee (Apis mellifera) colonies. Journal of Invertebrate Pathology 99, 8286.CrossRefGoogle ScholarPubMed
Masry, S. H. D., Kabeil, S. S. and Hafez, E. E. (2014) New Paenibacillus larvae bacterial isolates from honey bee colonies infected with American foulbrood disease in Egypt. Biotechnology and Biotechnological Equipment 28, 271276.CrossRefGoogle ScholarPubMed
MoEP [Ministry of Economics and Planning] (2012) Import data on honey bees from different sources. Central Department of Statistics and Information, Ministry of Economics and Planning (MoEP), Kingdom of Saudi Arabia.Google Scholar
Naug, D. (2009) Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biological Conservation 142, 23692372.CrossRefGoogle Scholar
Neuendorf, S., Hedtke, K., Tangen, G. and Genersch, E. (2004) Biochemical characterization of different genotypes of Paenibacillus larvae subsp. larvae, a honey bee bacterial pathogen. Microbiology 150, 23812390.CrossRefGoogle Scholar
Nizar, H., Alaa, A., Noureddine, A., Fares, K. and Quddoumi, S. (2015) Diagnosis of Paenibacillus larvae from honey bees in Jordan according to microbiological and chemical techniques. Asian Journal of Animal Sciences 9, 318329. doi: 10.3923/ajas.2015.318.329.CrossRefGoogle Scholar
OIE [Organization mondiale de la santé animale] (2008) American foulbrood, pp. 395404. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees), Vol. 1 (6th edn). OIE, Paris, France.Google Scholar
Plagemann, O. (1985) Eine einfache Kulturmethode zur bakteriologischen Identifizierung von Bacillus larvae mit Columbia-Blut-Schrägagar. Berl Munch Tierarztl Wochenschr 98, 6162.Google Scholar
Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O. and Kunin, W. E. (2010) Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution 25, 345353.CrossRefGoogle ScholarPubMed
Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Shimanuki, H. and Knox, D. A. (1988) Improved method for the detection of Bacillus larvae spores in honey. American Bee Journal 128, 353354.Google Scholar
Shimanuki, H. and Knox, D. A. (2000) Diagnosis of Honey Bee Diseases. US Department of Agriculture-Agricultural Research Service. Agriculture Handbook Number UAH-690. 61 pp.Google Scholar
Sturtevant, A. P. (1932) Relation of commercial honey to the spread of American foulbrood. Journal of Agricultural Research 45, 257285.Google Scholar
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle Scholar
Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
vanEngesldorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B. K., Frazier, M., Frazier, J., Cox-Foster, D., Chen, Y., Underwood, R., Tarpy, D. R. and Pettis, J. S. (2009) Colony collapse disorder: a descriptive study. PLoS ONE 4, e6481. https://doi.org/10.1371/journal.pone.0006481.CrossRefGoogle Scholar
Watanabe, M. E. (2008) Colony collapse disorder: many suspects, no smoking gun. BioScience 58, 384388.CrossRefGoogle Scholar
Wilson, W. T. (1971) Resistance to American foulbrood in honey bees. XI: Fate of Bacillus larvae spores ingested by adults. Journal of Invertebrate Pathology 17, 247255.CrossRefGoogle ScholarPubMed
Woodrow, A. W. (1942) Susceptibility of honeybee larvae to individual inoculations with spores of Bacillus larvae . Journal of Economic Entomology 35, 892895.CrossRefGoogle Scholar
Woodrow, A. W. and Holst, E. C. (1942) The mechanism of colony resistance to American foulbrood. Journal of Economic Entomology 35, 327330.CrossRefGoogle Scholar
Yue, D., Nordhoff, M., Wieler, L. H. and Genersch, E. (2008) Fluorescence in situ hybridization (FISH) analysis of the interactions between honeybee larvae and Paenibacillus larvae, the causative agent of American foulbrood of honey bees (Apis mellifera). Environmental Microbiology 10, 16121620.CrossRefGoogle Scholar