Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T03:17:48.478Z Has data issue: false hasContentIssue false

Chemical composition of Rosmarinus officinalis (Lamiaceae) essential oils and evaluation of their toxicity against Bruchus rufimanus (Coleoptera: Chrysomelidae: Bruchinae) in Morocco

Published online by Cambridge University Press:  29 May 2018

Karima Hannour*
Affiliation:
Laboratory of Applied Entomology, Team of Plant Protection and Environment, Department of Biology, Faculty of Sciences, Moulay Ismail University, P.O. Box 11201, 50000 Meknes, Morocco
Ahmed Boughdad
Affiliation:
Department of Plant Protection and Environment, National School of Agriculture, P.O. Box S/40, 50000 Meknes, Morocco
Abdelwahed Maataoui
Affiliation:
Department of Agronomy, National School of Agriculture, P.O. Box S/40, 50000 Meknes, Morocco
Aziz Bouchelta
Affiliation:
Laboratory of Applied Entomology, Team of Plant Protection and Environment, Department of Biology, Faculty of Sciences, Moulay Ismail University, P.O. Box 11201, 50000 Meknes, Morocco
*
Get access

Abstract

Control methods used to limit field losses caused by Bruchus rufimanus Boheman, 1833 consist of synthetic insecticides that pose health risks to farmers, consumers and the environment. In an attempt to find safer alternatives, we screened essential oils from the leaves of Rosmarinus officinalis collected in the Middle Atlas and Loukkos regions of Morocco in the laboratory as natural fumigants against B. rufimanus. These essential oils were extracted by steam distillation using a Clevenger distiller, characterised chemically by coupled gas chromatography–mass spectrometry (GC/MS) and tested at five concentrations (0, 10, 20, 40, 80 µl/l air). The essential oils of R. officinalis mainly comprised oxygenated monoterpenes (Middle Atlas: 79.4%; Loukkos: 48.78%) and terpenes (Middle Atlas: 14.71%; Loukkos: 32.33%). The lethal concentrations (LC50) of Middle Atlas and Loukkos essential oils against male beetles ranged from, respectively, 46.53 to 1.19 µl/l air and 58.85 to 11.57 µl/l air. Similarly, doses of R. officinalis essential oils from Middle Atlas and Loukkos lethal to females, ranged from 44.6 to 2.08 µl/l air and from 53.00 to 5.38 µl/l air, respectively. Additionally, the lethal time (LT50 and LT99) of exposed adults ranged from 1–8 and from 2–13 days for different concentrations of R. officinalis essential oils from Middle Atlas and Loukkos, respectively. With no mortality recorded in the control groups, these findings demonstrate the fumigant potential of these oils against this bruchid under the storage conditions.

Type
Research Paper
Copyright
Copyright © icipe 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W. S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.Google Scholar
Adams, R. P., Morris, J. A., Pandey, R. N. and Schwarzbach, A. E. (2005) Cryptic speciation between Juniperus deltoides and Juniperus oxycedrus (Cupressaceae) in the Mediterranean. Biochemical Systematics and Ecology 33, 771787.Google Scholar
Ahn, Y.-J., Lee, S.-B., Lee, H.-S. and Kim, G.-H. (1998) Insecticidal and acaricidal activity of caravacrol and β-thujaplicine derived from Thujopsis dolabrata var. hondai sawdust. Journal of Chemical Ecology 24, 8190.Google Scholar
Ait‐Ouazzou, A., Lorán, S., Bakkali, M., Laglaoui, A., Rota, C., Herrera, A., Pagán, R. and Conchello, P. (2011) Chemical composition and antimicrobial activity of essential oils of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco. Journal of the Science of Food and Agriculture 91, 26432651.Google Scholar
Amri, I., Hamrouni, L., Hanana, M., Jamoussi, B. and Lebdi, K. (2014) Essential oils as biological alternatives to protect date palm (Phoenix dactylifera L.) against Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae). Chilean Journal of Agricultural Research 74, 273279.Google Scholar
Aqel, M. B. (1991) Relaxant effect of the volatile oil of Rosmarinus officinalis on tracheal smooth muscle. Journal of Ethnopharmacology 33, 5762.Google Scholar
Atik Bekkara, F. A., Bousmaha, L., Taleb Bendiab, S. A., Boti, J. B. and Casanova, J. (2007) Composition chimique de lʼhuile essentielle de Rosmarinus officinalis L. poussant à lʼétat spontané et cultivé de la région de Tlemcen. Biologie & Santé 7, 611.Google Scholar
Barnard, C., Padgitt, M. and Uri, N. D. (1997) Pesticide use and its measurement. International Pest Control 39, 161164.Google Scholar
Bell, C. H. and Wilson, S. M. (1995) Phosphine tolerance and resistance in Trogoderma granarium Everts (Coleoptera: Dermestidae). Journal of Stored Products Research 31, 199205.Google Scholar
Benhalima, H., Chaudhry, M. Q., Mills, K. A. and Price, N. R. (2004) Phosphine resistance in stored-product insects collected from various grain storage facilities in Morocco. Journal of Stored Products Research 40, 241249.Google Scholar
Bennadja, S., Kaki, Y. T. A., Djahoudi, A., Hadef, Y. and Chefrour, A. (2013) Antibiotic activity of the essential oil of laurel (Laurus nobilis L.) on eight bacterial strains. Journal of Life Sciences 7, 814819.Google Scholar
Bouchikhi Tani, Z., Bendahou, M. and Khelil, M. A. (2010) Lutte contre la bruche Acanthoscelides obtectus et la mite Tineola bisselliella par les huiles essentielles extraites de deux plantes aromatiques d'Algérie. Lebanese Science Journal 11, 5568.Google Scholar
Bouchikhi Tani, Z., Khelil, M. A., Bendahou, M. and Juli, P.V. (2012) Lutte contre les trois bruches Acanthoscelides obtectus (Say, 1893), Bruchus rufimanus Boheman, 1833 et Collosobruchus maculatus (Fabricius, 1775) (Coleoptera: Chrysomelidae: Bruchinae) par les huiles essentielles extraites de Origanum glandulosum (Lamiacées). Butlletí de la Institució Catalana d'Història Natural 76, 177186.Google Scholar
Bouchikhi Tani, Z., Khelil, M. A. and Hassani, F. (2008) Fight against the bruche bean Acanthoscelides obtectus (Coleoptera: Bruchidae) and the mite Tineola bisselliella (Lepidoptera, Tineidae) by the essential oils extracted from Rosmarinus officinalis. Biosciences Biotechnology Research Asia 5, 651656.Google Scholar
Boughdad, A. and Laugé, G. (1997) Infestation et pertes des graines de Vicia faba L. dues à Bruchus rufimanus Boh. (Coleoptera : Bruchidae) au Maroc. Al Awamia 97, 2739.Google Scholar
Bruneton, J. (1993) Pharmacognosy, Phytochemistry, Medicinal Plants. 2nd edition TEC & DOC-Lavoisier. Paris. 915 pp.Google Scholar
Clevenger, J. F. (1928) Apparatus for the determination of volatile oil. Journal of the American Pharmaceutical Association 17, 345349.Google Scholar
Cosimi, S., Rossi, E., Cioni, P. L. and Canale, A. (2009) Bioactivity and qualitative analysis of some essential oils from Mediterranean plants against stored-product pests: Evaluation of repellency against Sitophilus zeamais Motschulsky, Cryptolestes ferrugineus (Stephens) and Tenebrio molitor (L.). Journal of Stored Products Research 45, 125132.Google Scholar
Daoui, K. (2007) Recherche de stratégies d'amélioration de l'efficience d'utilisation du phosphore chez la fève (Vicia faba L.) dans les conditions d'agriculture pluviale au Maroc. Thèse de Doctorat. Sciences agronomiques et ingénierie biologique. Louvain. 227.Google Scholar
De-Oliveira, A. C. X., Ribeiro-Pinto, L. F. and Paumgartten, F. J. R. (1997) In vitro inhibition of CYP2B1 monooxygenase by β-myrcene and other monoterpenoid compounds. Toxicology Letters 92, 3946.Google Scholar
Derwich, E., Benziane, Z. and Chabir, R. (2011) Aromatic and medicinal plants of Morocco: chemical composition of essential oils of Rosmarinus officinalis and Juniperus phoenicea. International Journal of Applied Biology and Pharmaceutical Technology 2, 145153.Google Scholar
Don-Pedro, K. N. (1996) Fumigant toxicity of citrus peel oils against adult and immature stages of storage insect pest. Pesticide Science 47, 213223.Google Scholar
Douiri, L. F., Boughdad, A., Alaoui, M. H. and Moumni, M. (2014) Biological activity of Rosmarinus officinalis essential oils against Callosobruchus maculatus, (Coleoptera, Bruchinae). Journal of Biology, Agriculture and Healthcare 4, 514.Google Scholar
Enan, E. (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 130, 325337.Google Scholar
Ezzahiri, B., Bouhache, M. and Mihi, M. (2014) Index Phytosanitaire du Maroc, édition 2014. 304 p.Google Scholar
Fadili, K., Ayane, S., Hadic, O., Elhilali, F., Khabbal, Y. and Zair, T. (2014) Phytochemistry and antibacterial activity of essential oils of two species of Rosmarinus in the High Atlas Morocco. Australian Journal of Basic & Applied Sciences 8, 287295.Google Scholar
Finney, D. J. (1964) Statistical Method in Biological Assay. 2nd edition. Charles Griffin & Co., London, 333 pp.Google Scholar
Goyoaga, C., Burbano, C., Cuadrado, C., Romero, R., Guillamón, E., Varela, A., Pedrosa, M. M. and Muzquiz, M. (2011) Content and distribution of protein, sugars and inositol phosphates during the germination and seedling growth of two cultivars of Vicia faba. Journal of Food Composition and Analysis 24, 391397.Google Scholar
Haloui, M., Louedec, L., Michel, J.-B. and Lyoussi, B. (2000) Experimental diuretic effects of Rosmarinus officinalis and Centaurium erythraea. Journal of Ethnopharmacology 71, 465472.Google Scholar
Hanafy, M., Pickardt, T., Kiesecker, H. and Jacobsen, H.-J. (2005) Agrobacterium-mediated transformation of faba bean (Vicia faba L.) using embryo axes. Euphytica 142, 227236.Google Scholar
Houghton, P. J., Ren, Y. and Howes, M.-J. (2006) Acetylcholinesterase inhibitors from plants and fungi. Natural Product Reports 23, 181199.Google Scholar
Kaplan, E. L. and Meier, P. (1958) Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53, 457481.Google Scholar
Kaur, S., Pembleton, L.W., Ol Cogan, N., Savin, K.W., Leonforte, T., Paull, J., Materne, M. and Forster, J.W. (2012) Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genomics 13, 104.Google Scholar
Ketoh, G. K. (1998) Utilisation des huiles essentielles des quelques plantes aromatiques du Togo comme biopesticides dans la gestion des stades de développement de Callosobruchus maculatus (Coleoptera: Bruchidae). Thèse de doctorat, Université de Lomé. 141 pp.Google Scholar
Ketoh, G. K., Glitho, I. A. and Koumaglo, H. K. (2004) Activite insecticide comparee des huiles essentielles de trois especes du genre Cymbopogon (Poaceae). Journal de la Société Ouest-Africaine de Chimie 18, 2134.Google Scholar
Ketoh, G. K., Koumaglo, H. K., Glitho, I. A. and Huignard, J. (2006) Comparative effects of Cymbopogon schoenanthus essential oil and piperitone on Callosobruchus maculatus development. Fitoterapia 77, 506510.Google Scholar
Laiq-ur-Rahman, Kukerja A. K., Singh, S. K., Singh, A., Yadav, A. and Khanuja, S. P. S. (2007) Qualitative analysis of essential oil of Rosmarinus officinalis L. cultivated in Uttaranchal Hills, India. Journal of Spices and Aromatic Crops 16, 5557.Google Scholar
Lee, B.-H., Annis, P. C., Tumaalii, F. and Choi, W.-S. (2004) Fumigant toxicity of essential oils from the Myrtaceae family and 1, 8-cineole against 3 major stored-grain insects. Journal of Stored Products Research 40, 553564.Google Scholar
Leung, A. Y. and Foster, S. (1996) Encyclopaedia of Common Natural Ingredients Used in Food, Drugs and Cosmetics. Wiley, New York. 649 pp.Google Scholar
Lopes, D., Strobl, H. and Kolodziejczyk, K. P. (2004) 14-Methylpentadecano-15-lactone (Muscolide): A new macrocyclic lactone from the oil of Angelica archangelica L. Journal of Chemistry and Biodiversity 1, 18801887.Google Scholar
Maatougui, M. E. H. (1996) Situation de la culture des fèves en Algérie et perspectives de relance. Revue Technique et Scientifique 29, 614.Google Scholar
Mahmoudvand, M., Abbasipour, H., Hosseinpour, M. H., Rastegar, F. and Basij, M. (2011) Using some plant essential oils as natural fumigants against adults of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Munis Entomology & Zoology 6, 150154.Google Scholar
Mata, A. T., Proença, C., Ferreira, A. R., Serralheiro, M. L. M., Nogueira, J. M. F. and Araújo, M. E. M. (2007) Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. Food Chemistry 103, 778786.Google Scholar
Napoli, E. M., Curcuruto, G. and Ruberto, G. (2010) Screening of the essential oil composition of wild Sicilian rosemary. Journal of Biochemical Systematics and Ecology 38, 659670.Google Scholar
Ngamo, L. S. T. and Hance, T. H. (2007) Diversité des ravageurs des denrées et méthodes alternatives de lutte en milieu tropical. Tropicultura 25, 215220.Google Scholar
Obeng-Ofori, D., Reichmuth, C. H., Bekele, A. J. and Hassanali, A. (1998) Toxicity and protectant potential of camphor, a major component of essential oil of Ocimum kilimandscharicum, against four stored product beetles. International Journal of Pest Management 44, 203209.Google Scholar
Offord, E. A., Macé, K., Ruffieux, C., Malnoë, A. and Pfeifer, A. M. A. (1995) Rosemary components inhibit benzo[a]pyrene-induced genotoxicity in human bronchial cells. Carcinogenesis 16, 20572062.Google Scholar
Ojeda-Sana, A. M., van Baren, C. M., Elechosa, M. A., Juárez, M. A. and Moreno, S. (2013) New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control 31, 189195.Google Scholar
Ojimelukwe, P. C. and Adler, C. (1999) Potential of zimtaldehyde, 4-allyl-anisol, linalool, terpineol and other phytochemicals for the control of the confused flour beetle (Tribolium confusum J. d. V.) (Col., Tenebrionidae). Anzeiger für Schädlingskunde = Journal of Pest Science 72, 8186.Google Scholar
Pintore, G., Usai, M., Bradesi, P., Juliano, C., Boatto, G., Tomi, F., Chessa, M., Cerri, R. and Casanova, J. (2002) Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from Sardinia and Corsica. Flavour and Fragrance Journal 17, 1519.Google Scholar
Prates, H. T., Santos, J. P., Waquil, J. M., Fabris, J. D., Oliveira, A. B. and Foster, J. E. (1998) Insecticidal activity of monoterpenes against Rhyzopertha dominica (F.) and Tribolium castaneum (Herbst). Journal of Stored Products Research 34, 243249.Google Scholar
Regnault-Roger, C. and Hamraoui, A. (1993) Efficiency of plants from the South of France used as traditional protectants of Phaseolus vulgaris L. against its bruchid Acanthoscelides obtectus (Say). Journal of Stored Products Research 29, 259264.Google Scholar
Regnault-Roger, C. and Hamraoui, A. (1994) Inhibition of reproduction of Acanthoscelides obtectus Say (Coleoptera), a kidney bean (Phaseolus vulgaris) bruchid, by aromatic essential oils. Crop Protection 13, 624628.Google Scholar
Ruberto, G. and Baratta, M. T. (2000) Antioxidant activity of selected essential oil components in two lipid model systems. Food Chemistry 69, 167174.Google Scholar
Salamci, E., Kordali, S., Kotan, R., Cakir, A. and Kaya, Y. (2007) Chemical compositions, antimicrobial and herbicidal effects of essential oils isolated from Turkish Tanacetum aucheranum and Tanacetum chiliophyllum var. Chiliophyllum. Biochemical Systematics and Ecology 35, 569581.Google Scholar
Scott, I. M., Jensen, H., Scott, J. G., Isman, M. B., Arnason, J. T. and Philogène, B. J. R. (2003) Botanical insecticides for controlling agricultural pests: piperamides and the Colorado potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Archives of Insect Biochemistry and Physiology 54, 212225.Google Scholar
Soylu, E. M., Kurt, S. and Soylu, S. (2010) In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. International Journal of Food Microbiology 143, 183189.Google Scholar
Tomei, P. E., Cioni, P. L., Flamini, G. and Stefani, A. (1995) Evaluation of the chemical composition of the essential oils of some Lamiaceae from Serrania de Ronda (Andaluçia, Spain). Journal of Essential Oil Research 7, 279282.Google Scholar
WMO/UNEP/NOAA/NASA (1995) Scientific assessment of ozone depletion 1994. Global Ozone Research and Monitoring Project, Report No. 37. World Meteorological Organization (WMO), Geneva, Switzerland; United Nations Environment Programme (UNEP), Nairobi, Kenya; National Oceanic and Atmospheric Administration, Office of the Mission to Planet Earth (NOAA); National Aeronautics and Space Administration (NASA), Washington, DC, USA.Google Scholar
Yesil Celiktas, O., Hames Kocabas, E. E., Bedir, E., Vardar Sukan, F., Ozek, T. and Baser, K. H. C. (2007) Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chemistry 100, 553559.Google Scholar
Zoubiri, S. and Baaliouamer, A. (2011) Chemical composition and insecticidal properties of some aromatic herbs essential oils from Algeria. Food Chemistry 129, 179182.Google Scholar
Zrira, S. (2006) Lettre Bimensuelle d'Information sur les Plantes Aromatiques et Médicinales. MAROC-PAM projet AP3 n°7 Novembre–Décembre 2006. Available at: http://www.doc-developpement-durable.org/file/Plantes-Medicinales-Aromatiques/FICHES_PLANTES/origan/Maroc-PAMNewsletter_7-origan.pdfGoogle Scholar