Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T19:56:22.888Z Has data issue: false hasContentIssue false

Characterization of kenyan isolates of Leishmania by Cellulose acetate electrophoresis

Published online by Cambridge University Press:  19 September 2011

N. N. Massamba
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
M. J. Mutinga
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
B. N. Odero
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
Get access

Abstract

Thirty-eight Leishmania isolates from different host species (humans, mammals, reptiles and sandflies) from various parts of Kenya were compared with six World Health Organization Leishmania reference strains. Isoenzyme variations were assessed on the basis of their electrophoretic profiles on cellulose acetate membranes. Out of 18 enzymes studied, Five were selected for differentiating the Leishmania isolates. These were glucose-6-phosphate dehydrogenase (G6PD, E. C. 1. 1. 1. 49), glucose phosphate isomerase (GPI, E. C. 5. 3. 1. 9), malate dehydrogenase (MDH, E. C. 1. 1. 1. 37), mannose phosphate isomerase (MPI, E. C. 5. 3. 1. 8) and phosphoglucomutase (PGM, E. C. 2. 7. 5. 1).

Twenty-one isolates showed enzymatic patterns identical to the Leishmania reference strain Leishmania major IC-236, five isolates were similar to the Leishmania reference strain L. donovani IC-245 and three isolates were identical to the Leishmania reference strain L. aethiopica IC-228.

However, nine Leishmania isolates could not be identified by this method. They are either leishmanial species for which more Leishmania reference strains are needed for comparison or unidentified flagellates species.

The banding patterns revealed by L. major IC-235, isolated from Israel, were different from those of L. major IC-236, isolated from Kenya, with respect to G6PD; GPI; MDH; MPI and PGM.

Résumé

Trente-huit nouveaux isolats de Leishmania de différentes origines humaine et animale (hommes, chats sauvages, chèvres, lézards et phlébotomes) obtenus à travers le Kenya sont comparés avec des souches de référence de l'Organisation Mondiale de la Santé.

Les variations isoenzymatiques ont été déterminées en se basant sur leurs profits électrophorétiques sur membrane d'acétate de cellulose. Des dix-huit enzymes analysés, cinq ont été séléctionnés pour différencier les isolats de Leishmania. II s'agit du glucose-6-phosphate déshydrogenase (G6PD, E. C. 1. 1. 1. 49), glucose phosphate isomerase (GPI, E. C. 5. 3. 1. 9), malate déshydrogenase (MDH, E. C. 1. 1. 1. 37), mannose phosphate isomerase (MPI, E. C. 5. 3. 1. 8) et phosphoglucomutase (PGM, E. C. 2. 7. 5. 1).

Vingt et un isolats ont montré des profils enzymatiques identiques à ceux de la souche de référence Leishmania major IC-236, cinq étaient similaires à la souche de référence L. donovani IC 245 et trois isolats étaient identiques à la souche de référence L. aethiopica IC-228.

Cependant neuf isolats n'ont pas pu être identifiés par la méthode utilisée. IIs sont probablement identiques aux espèces déjà connues pour lesquelles des souches de référence sont nécessaires pour la comparaison ou d'autres espèces flagellées non identifiées de la famille de Kinoplastidae.

Les données présentées dans cet article indiquent aussi que les profils électrophorétiques obtenus avec la souche de référence L. major IC-235 en provenance d'Israel étaient très différents de ceux obtenus avec la souche de référence L. major IC-236 originaire du Kenya par rapport aux enzymes G6PD; GPI; MDH; MPI et PGM. Les implications épidémiologiques de ces données ont été discutées.

Type
Research Articles
Copyright
Copyright © ICIPE 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aljeboori, T. I. and Evans, D. A. (1980) Leishmania spp. in Iraq. Electrophoretic isoenzyme patterns. Visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 74, 169177.CrossRefGoogle ScholarPubMed
Allsopp, B. A., Jones, A., Allsopp, M. T. E., Newton, S. D. and Macpherson, C. N. L. (1987) Interspecific characterization of several taeniid cestodes by isoenzyme analysis using isoelectric focusing in agarose. Parasitology 95, 593601.CrossRefGoogle ScholarPubMed
Ferguson, C. (1987) Leishmaniasis debilitating, disfiguring and sometimes deadly. The International Development Research Centre, Reports. 16 No. 4 pp. 23.Google Scholar
Gibson, W. C., Mehlitz, D., Lanham, S. M. and Godfrey, D. G. (1978) The identification of Trypanosome brucei gambiense in Liberian pigs and dogs by isoenzymes and by resistance to human plasma. Tropenmed. Parasitol. 29, 335345.Google ScholarPubMed
Gibson, W. C., Parr, C. W., Swindlehurst, C. A. and Welch, S. G. (1978) A comparison of the isoenzymes, soluble proteins polypeptides and free amino acids from ten isolates of Trypanosoma evansi. Comp. Biochem. Physiol. 60B, 137142.Google Scholar
Githure, J., Schnur, L. F., Le Blancq, S. M. and Hendricks, L. D. (1986) Characterization of Kenyan Leishmania spp. and the identification of Mastomys natalensis, Tarterillus emini and Aethomys kaiseri as new hosts of Leishmania major. Ann. Trop. Med. Parasitol. 80, 501507.CrossRefGoogle ScholarPubMed
Godfrey, D. G. and Kilgour, V. (1976) Enzyme electrophoresis in characterizing the causative organisms of Gambian trypanosomiasis. Trans. R. Soc. Trop. Med. Hyg. 70, 219224.CrossRefGoogle ScholarPubMed
Gomez-Eichelman, C. M., Holz, G. Jr, Beach, D., Simpson, A. M. and Simpson, L. (1988) Comparison of several lizard Leishmania species and strains in terms of kinetoplast minicirele and maxicirele DN A sequences, nuclear chromosomes and membrane lipids. Mol. Biochem. Parasitol. 27, 143158.CrossRefGoogle Scholar
Kreutzer, R. D. and Christensen, H. A. (1980) A comparison of electrophoretic methods for isoenzyme characterization of trypanosomatids. I: Standard stocks of Trypanosoma cruzi zymodemes from northeast Brazil. Am. J. Trop. Med. Hyg. 29, 199208.CrossRefGoogle Scholar
Kruger, F. J. (1988) Further observations on the electrophoretic characterization of South Africa Schistosoma mattheei and Schistosoma haematobium. Onderstepoort J. Vet. Res. 55, 6768.Google Scholar
Lanham, S. M., Grendon, J. M., Miles, M. A., Povoa, M. M. and Almeida De Souza, A. A. (1981) Characterization of Leishmania spp. by isoenzyme electrophoresis. Trans. R. Soc. Trop. Med. Hyg. 75, 742750.CrossRefGoogle Scholar
Le Blancq, S. M. and Peters, W. (1986) Leishmania in the Old World: 4. The distribution of L. donovani sensu lato zymodemes. Trans. R. Soc. Trop. Med. Hyg. 80, 367377.CrossRefGoogle ScholarPubMed
Le Blancq, S. M., Schnur, L. F. and Peters, W. (1986) Leishmania in the Old World: 1. The geographical and hostal distribution of L. major zymodemes. Trans. R. Soc. Trop. Med. Hyg. 80, 99112.CrossRefGoogle ScholarPubMed
Letch, C. A. and Gibson, W. (1981) Trypanosome brucei: the peptidases of blood stream trypanosomes. Exp. Parasitol. 52, 8690.CrossRefGoogle Scholar
Macpherson, C. N. L. and MacManus, D. P. (1982) A comparative study of Echinococcus granulosus from human and animal hosts in Kenya using isoelectric focusing and isoenzyme analysis. Int. J. Parasitol. 12, 515521.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Hamers, R., Van Meirvenne, N. and Matthyssens, G. (1986) Evidence for genetic diversity in Trypanosoma (Nannomonas) congolense. Parasitology 93, 291304.CrossRefGoogle ScholarPubMed
Muigai, R., Githure, J. I., Gachihi, G. S., Were, J. B. O., Leeuwenburg, J. and Perkins, P. V. (1987) Cutaneous leishmaniasis caused by Leishmania major in Baringo District, Kenya. Trans. R. Soc. Trop. Med. Hyg. 81, 600602.CrossRefGoogle ScholarPubMed
Mutinga, M. J. and Ngoka, J. M. (1983) Investigation of animal reservoirs of visceral leishmaniasis and the isolation of Leishmania major in Marigat, Baringo. District, Kenya. Insect Sci. Applic. 4, 237240.Google Scholar
Mutinga, M. J., Mutero, C. M., Ngindu, A. and Amimo, F. A. (1988) The isolation of leishmanial parasites from domestic goats and wild hosts and possible role of goats as reservoirs of leishmaniasis. Insect Sci. Applic. 9, 339344.Google Scholar
Mutinga, M. J., Kihara, S. M., Lohding, A., Mutero, C. M., Ngatia, T. A. and Karann, F. (1989) Leishmaniasis in Kenya: description of leishmaniasis of a domestic goat from Transmara, Narok District, Kenya. Trop. Med. Parasitol. 40, 9196.Google ScholarPubMed
Okot-Kofber, B. M. (1985) A rapid chromatographic method for elimination of fungal Contamination in “in vitro” cultures of Leishmania spp. Parasitology 91, 17.CrossRefGoogle Scholar
Okot-Kotber, B. M., Mutinga, M. J. and Kaddu, J. B. (1989) Biochemical characterization of Leishmania spp. isolated from man and wild animals in Kenya. Int. J. Parasitol. 19, 657663.CrossRefGoogle ScholarPubMed
Riou, G. F. and Yot, P. (1977) Heterogeneity of the kinetoplast DNA molecules of Trypanosoma cruzi. Biochemistry 16, 23902396.CrossRefGoogle ScholarPubMed
Ross, G. C. (1977) Analysis by isoelectric focusing of phosphoglucose isomerase in Schistosoma species and their snail hosts. Proceedings of the Analytical Division of the Chemical Society, 7679.Google Scholar
Schottelius, J. (1982) Lectin binding strain-specific carbohydrates on the cell surfaces of Leishmania strains from the Old World. Zeit. Parasit. 66, 237247.CrossRefGoogle ScholarPubMed
Simpson, L. and Simpson, A. M. (1978) Kinetoplast DNA of Leishmania tarentolae. Cell 14, 169178.CrossRefGoogle ScholarPubMed
UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) (1987) Eighth Programme Report pp. 99111.Google Scholar