Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T01:22:54.012Z Has data issue: false hasContentIssue false

Characterisation of Bacillus thuringiensis variety israelensis delta-endotoxin

Published online by Cambridge University Press:  19 September 2011

Fred W. Wamunyokoli
Affiliation:
Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000, Nairobi, Kenya
Ellie O. Osir
Affiliation:
International Centre of Insect Physiology and Ecology, P. O. Box 30772, Nairobi, Kenya
Get access

Abstract

Crystals of a local isolate of Bacillus thuringiensis variety israelensis were isolated by centrifugation on a continuous sucrose gradient (40–70%). Analysis of the crystals by SDS-PAGE revealed three major protein subunits of Mr˜25,000, ˜66,000 and Mr˜140,000. The crystals were solubilised using high pH and reducing conditions. Analysis of the soluble (protoxin) and insoluble fractions by SDS-PAGE showed the presence of proteins of Mr˜21,000 and ˜61,000, respectively. Proteolytic treatment of these fractions resulted in no apparent change in the molecular weights of the proteins. The crystals contained carbohydrate moieties as determined by periodic acid Schiff (PAS) and fluorescein isothiocyanate (FITC) Concanavalin A staining. In double radial immunodiffusion experiments, antisera raised against the Mr˜21,000 and ˜66,000 subunits did not react with other B. thuringiensis protoxins known to be active against the tsetse fly, Glossina morsitans morsitans, and the stemborer, Chile partellus.

Résumé

Les cristaux d'un isolat local de Bacillus thuringiensis var. israelensis ont été isolés sur un gradient de saccharose continu (40–70%). L'analyse des crystaux par SDS-PAGE a mis en évidence trois sous-unités protéiques majeures de Mr ˜25.000, ˜66.000 et Mr ˜140.000. Les crystaux ont été solubilisés en utilisant un pH élevé en conditions réductrices. L'analyse des fractions solubles (protoxines) et insolubles par SDS-PAGE a montré la présence des protéines de Mr ˜21.000 et ˜61.000. respectivement. Le traitement protéolytique de ces fractions a eu comme résultat un changement non apparent dans les poids moléculaires des protéines. Les cristaux contenaient des moïetés d'hydrates de carbone telles que determinées par l'acide périodique de Schiff (PAS) et l'isothiocianate de flourecéine (FTTC) qui colore la canavaline A. Dans les expériences de double immunodiffusion radiale, les antisérums produits contre les sous-unités Mr ˜21.000 et ˜66.000 n'ont pas réagi avec les autres protoxines de B. thuringiensis qui sont reconnues comme actives contre la mouche tsé-tsé, Glossina morsitans morsitans, et la foreur de tiges, Chilo partellus.

Type
Research Articles
Copyright
Copyright © ICIPE 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdel-Hameed, A., Lounatmaa, K., Carlberg, G. and El Tayeb, O. M. (1990) Studies on Bacillus thuringiensis H-14 strains isolated in Egypt—−II. Ultrastructure studies. World J. Microbiol. Biotechnol. 6, 305312.Google Scholar
Brownbridge, M. (1989) Isolation of new entomopathogenic strains of Bacillus thuringiensis and Bacillus sphericus. Isr. J. Entomol. 23, 109113.Google Scholar
Bulla, L. A. Jr, Kramer, K. J. and Davidson, L. I. (1977) Characterization of the entomocidal parasporal crystal of Bacillus thuringiensis. J. Bacteriol. 130, 375383.CrossRefGoogle ScholarPubMed
Burges, H. D. (1982) Control of insect pests by bacteria. Parasitology 84, 79117.Google Scholar
Carroll, J., Li, J. and Ellar, D. J. (1989) Proteolytic processing of a coleopteran-specific δ-endotoxin produced by Bacillus thuringiensis var. tenebrionis. Biochem. J. 261, 99105.Google Scholar
Drobniewski, F. A. and Ellar, D. J. (1989) Purification and properties of a 28-kilodalton haemolytic and mosquitocidal protein of Bacillus thuringiensis subsp. darmstadiensis 73-E10–2. J. Bacteriol. 171, 30603076.Google Scholar
Dulmage, H. T. (1975) Standardization and formulations of the delta-endotoxin produced by Bacillus thuringiensis. J. Invertebr. Pathol. 25, 279281.CrossRefGoogle Scholar
Fast, P. G. (1981) The crystal toxin of Bacillus thuringiensis, pp. 223248. In Microbial Control of Pests and Plant Diseases 1970–1980 (Edited by Burges, H. D.). Academic Press Inc., New York.Google Scholar
Furlan, M., Perret, B. A. and Beck, E. A. (1979) Staining of glycoproteins in polyacrylamide and agarose gels with fluorescent lectins. Anal. Biochem. 96, 208214.Google Scholar
Gill, S. S., Cowles, A. E. and Pietrantonio, P.V. (1992) The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37, 615636.CrossRefGoogle ScholarPubMed
Goldberg, L. H. and Margalit, J. (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosq. News 37, 355358.Google Scholar
Haider, M. Z., Knowles, B. H. and Ellar, D. J. (1986) Specificity of Bacillus thuringiensis var. colmeri insecticidal delta-endotoxin is determined by differential proteolytic processing of the protoxin by the larval gut proteases. Eur. J. Biochem. 156, 531540.Google Scholar
Höfte, H. and Whiteley, H. R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242255.Google Scholar
Ibarra, J. E. and Federici, B. A. (1986) Isolation of a relatively non-toxic 65-Kilodalton protein inclusion from the parasporal body of Bacillus thuringiensis subsp. israelensis. J. Bacteriol. 165, 527533.CrossRefGoogle Scholar
Kapitany, R. A. and Zebrowski, E. J. (1973) A high resolution PAS stain for polyacrylamide gel. Anal. Biochem. 56, 361369.Google Scholar
Knowles, B. H., Francis, P. H. and Ellar, D. J. (1986) Structurally related Bacillus thuringiensis delta-endotoxin display major differences in insecticidal activity in vivo and in vitro. J. Cell Sci. 84, 221236.Google Scholar
Knowles, B. H., White, P. J., Nicholls, C. N. and Ellar, D. J. (1992) A broad spectrum cytolytic toxin from Bacillus thuringiensis var. kyushuensis. Proc. R. Soc. Lond. 248, 17.Google ScholarPubMed
Kreig, A., Huger, A. M., Langenbruch, G. A. and Schnetter, W. (1983) Bacillus thuringinsis var. tenebrionis, ein neuer gegenuber larven von coleopteran wirksamer Pathotyp. Z. angew Ent. 96, 500508.Google Scholar
Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the heads of bacteriophages T4. Nature London 227, 680683.Google Scholar
Mikkola, A. R., Goldberg, G. A., Vaara, T. and Gyllenberg, H. G. (1982) Comparison of inclusions in different Bacillus thuringiensis strains. An electron microscopy study. FEMS Microbiol. Lett. 13, 401408.Google Scholar
Muthukumar, G. and Nickerson, K. W. (1987) The glycoprotein toxin of Bacillus thuringiensis subsp. israelensis indicates a lectin-like receptor in the larval mosquito gut. Appl. Environ. Microbiol. 53, 26502655.Google Scholar
Osir, E. O., Wells, M. A. and Law, J. H. (1986) Studies on vitellogenin from the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 3, 217225.CrossRefGoogle Scholar
Ouchterlony, O. (1958) Diffusion-in-gel methods for immunological analysis, pp. 178. In Progress in Allergy Vol. 5 (Edited by Kallos, P.). Karger, Bassel.Google Scholar
Pfannenstiel, M. A., Couche, G. A., Ross, E. J. and Nickerson, K. W. (1986) Immunological relationships among proteins making up the Bacillus thuringiensis subsp. israelensis crystalline toxin. Appl. Environ. Microbiol. 52, 644649.Google Scholar
Pfannenstiel, M. A., Muthukumar, G., Couche, G. A. and Nickerson, K. W. (1987) Amino sugars in the glycoprotein toxin from Bacillus thuringiensis subspecies israelensis. J. Bacteriol. 169, 796801.CrossRefGoogle Scholar
Pfannenstiel, M. A., Ross, E. J., Kramer, V. C. and Nickerson, K. W. (1984) Toxicity and composition of protease inhibited Bacillus thuringiensis variety israelensis crystals. FEMS Microbiol. Lett. 21, 3942.Google Scholar
Smirnoff, W. A. (1962) A staining method for differentiating spores, crystals and cells of Bacillus thuringiensis (Berliner). J. Invertebr. Pathol. 4, 384386.Google Scholar
Thomas, W. E. and Ellar, D. J. (1983) Bacillus thuringiensis var. israelensis crystal δ-endotoxin: Effects on insect and mammalian cells in vitro and in vivo. J. Cell Sci. 60, 181197.Google Scholar
Tyrell, D. J., Bulla, L. A. Jr, Andrews, R. E. Jr,, Kramer, K. J., Davidson, L. J. and Nordin, P. (1981) Comparative biochemistry of entomocidal parasporal crystals of selected Bacillus thuringiensis strains. J. Bacteriol. 145, 10521062.Google Scholar
Yu, Y. M., Ohba, M. and Gill, S. S. (1991) Characterization of mosquitocidal activity of Bacillus thuringiensis subspecies fukuokaensis crystal proteins. Appl. Environ. Microbiol. 57, 10751081.Google Scholar