Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T02:18:48.708Z Has data issue: false hasContentIssue false

Biology of the African sweetpotato weevil species Cylas puncticollis (Boheman) and C. brunneus (Fabricius) (Coleoptera: Apionidae)

Published online by Cambridge University Press:  19 September 2011

N. E. J. M. Smit
Affiliation:
International Potato Centre (CIP), Uganda Office, P.O. Box 7878, Kampala, Uganda
A. van Huis
Affiliation:
Department of Entomology, Wageningen Agricultural University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
Get access

Abstract

The biology of two African sweetpotato weevil species, Cylas puncticollis and C. brunneus (Fabricius) (Coleoptera: Apionidae), was studied in laboratory experiments carried out at 27 ± 1°C, 45 ± 5% RH, and a 12 h photophase. Cylas puncticollis females lived longer than C. brunneus (141 ± 10 and 92±12 days respectively), developed faster (egg to adult 20–28 days, and 32–41 days respectively) and had a lower oviposition rate (1.10 ± 0.04 and 1.53 ± 0.06 eggs per female per day respectively). The total egg production per female (average 101), sex ratio (1:1) and proportion of eggs surviving to adulthood (average 89%) were similar for both species. The intrinsic rate of increase was higher for C. puncticollis (0.553 per 10-day period compared to 0.521 for C. brunneus). Under field conditions C. brunneus will benefit from its higher oviposition rate during periods of favourable conditions for sweet potato weevils, like dry spells which expose tubers for egg laying. Cylas puncticollis will benefit from its longer longevity during less favourable conditions, as females can survive extended periods when no oviposition sites are available and then resume egg laying when conditions improve.

Résumé

La biologie de deux espèces africaines de charançons de la patate douce, Cylas puncticollis et C. brunneus a été suivie en laboratoire à 27 ± 1°C, 45 ± 5% de HR et 12 h de photopériode. Les résultats montrent que les femelles de C. puncticollis vivent plus longtemps que celles de C. brunneus (141 ± 10 et 92 ± 12 jours, respectivement). La femelle de Cylas puncticollis se développe plus rapidement que celle de l'autre espèce (respectivement 20–29 jours contre 32–41 jours, de l'oeuf à l'adulte). Elle a aussi un taux journalier de ponte plus bas (1,10 ± 0,04 contre 1,53 ± 0,06 oeufs, respectivement). Chez les deux espèces, on a enregistré une ponte moyenne par femelle de 101 oeufs, un sex ratio de 1:1 et un taux d'éclosion d'oeufs de 89%. Au cours d'une décade, le taux intrinsèque de croissance était de 0,553 chez C. puncticollis contre 0,521 pour C. brunneus. En champs, C. brunneus sera avantagé parsa capacité très élevée de pondre pendant les conditions favorables de développement des charançons comme la saison sèche qui favorise la ponte par l'exposition des tubercules à la surface. Cylas puncticollis va profiter de sa longévité plus étendue pour endurer les conditions moins favorables, et étant donné que les femelles peuvent survivre longtemps quand les sites de ponte ne sont pas disponibles, elles sont capables de reprendre les pontes quand ces conditions s'améliorent.

Type
Research Articles
Copyright
Copyright © ICIPE 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akazawa, T., Uritani, I. and Kubota, H. (1960) Isolation of ipomoeamarone and two coumarin derivatives from sweet potato roots injured by the weevil, Cylas formicarius elegantiilus. Arch. Biochem. Biophys. 88, 50156.Google Scholar
Anota, T. and Odebiyi, J. A. (1984) The biology of the sweet potato weevil, Cylas puncticollis Boheman (Coleóptera: Apinidae) in south-western Nigeria. Nigerian J. Ent. 5, 1019.Google Scholar
Austin, D. D. (1988) The taxonomy, evolution and genetic diversity of sweet potatoes and related wild species, pp. 2760. In Exploration, Maintenance, and Utilization of Sweet Potato Genetic Resources. International Potato Centre (CIP), Lima, Peru.Google Scholar
Austin, D. F., Jansson, R. K. and Wolfe, G. W. (1991) Concolvulaceae and Cylas: A proposed hypothesis on the origins of this plant/insect relationship. Trop. Agrie. (Trinidad) 68, 161170.Google Scholar
Autrique, A. and Perreaux, D. (1989) Maladies et Ravageurs des Cultures de la Région des Grand Lacs d'Afrique Centrale. 232 pp. Administration Générale de la Coopération au Développement. Brussels, Belgium.Google Scholar
CAB International (1993) Distribution Maps of Pests. Series A: Map No. 278. Cylas formicarius (Fabricius). Map No. 279. Cylas puncticollis (Boheman). Map No. 537. Cylas brunneus (Fabricius). CAB International, UK.Google Scholar
Chalfant, R. B., Jansson, R. K., Seal, D. R. and Schalk, J. M. (1990) Ecology and management of sweetpotato insects. Annu. Rev. Entomol. 35, 157180.Google Scholar
Daiber, K. C. (1994) Injurious insects, spider mites and nematodes on sweet potatoes in southern Africa, J. Plant Dis. Prot. 101, 550557.Google Scholar
Eulitz, E. G. (1974) Die biologie van die pataikalander. 82 pp. MSc Thesis, University of Pretoria, Pretoria, South Africa.Google Scholar
Gowdey, E. G. (1912) An Account of Insects Injurious to Economic Products and Their Control. Department of Agriculture, Uganda Protectorate, Entebbe, 32 pp.Google Scholar
Horton, D., Prain, G. and Gregory, P. (1989) High-level investment returns for global sweetpotato research and development. CIP Circular 17, 111.Google Scholar
Howe, R. W. (1953) The rapid determination of the intrinsic rate of increase of an insect population. Ann. Appi. Biol. 40, 134151.CrossRefGoogle Scholar
IITA (1977) UTA Research Highlights 1976. 157 pp. International Institute of Tropical Agriculture, Ibadan, Nigeria.Google Scholar
IITA (1982) UTA Annual Report 1981. 178 pp. International Institute of Tropical Agriculture, Ibadan, Nigeria.Google Scholar
Ingram, W. R. (1967) Chemical control of sweet potato weevil in Uganda. East Afr. Agrie. Forest. J., 163165.CrossRefGoogle Scholar
Jansson, R. K. and Hunsberger, A. G. B. (1991) Diel and ontogenetic patterns of oviposition in the sweetpotato weevil (Coleoptera: Curculionidae). Environ. Entomol. 20, 545550.CrossRefGoogle Scholar
Jansson, R. K. and Raman, K. V. (1991) Sweet potato pest management: A global overview, pp. 112. In Sweet Potato Pest Management. A Global Perspective (Edited by Jansson, R. K. and Raman, K. V.). Westview Press, Boulder, Colorado.Google Scholar
Lenné, J. M. (1991) Diseases and Pests of Sweet Potato. Bull. No. 46. 116 pp. Natural Resources Institute, Overseas Development Administration, London, UK.Google Scholar
Le Pelley, R. H. (1959) Agricultural Insects of East Africa. 307 pp. East African High Commission, Nairobi, Kenya.Google Scholar
Magenya, O. and Smit, N. E. J. M. (1991) Preliminary note on sweetpotato pests and local control practices in South Western Kenya, pp. 130138. In The Role of Root Crops in Regional Food Security and Sustainable Agriculture (Edited by Alvarez, M. N. and Asiedu, R.). Proceedings of the Fourth Eastern and Southern Africa Regional Workshop on Root and Tuber Crops, Mansa, Zambia, 29 Oct-2 Nov. 1990. UTA, Ibadan, Nigeria.Google Scholar
Mullen, M. A. (1981) Sweetpotato weevil, Cylas formicarius elegantulus (Summers): Development, fecundity and longevity. Ann. Entomol. Soc. Am. 74, 478481.CrossRefGoogle Scholar
Mwanga, R. O. M. and Wanyera, N. W. (1988) Sweet potato growing and research in Uganda, pp. 187198. In Improvement of Sweetpotato (Ipomoea batatas) in East Africa. Report of the workshop on sweet potato improvement in Africa, Nairobi, Kenya. International Potato Centre, Lima, Peru.Google Scholar
Nwana, I. E. (1979) The biology of Cylas puncticollis Boheman (Coleoptera: Apionidae) on Ipomoea batatas (Linneaus) Lamarck. Nigerian J. Ent. 3, 185190.Google Scholar
Parker, B. L., Wolfe, G. W. and Abubaker, A. (1992) Occurrence of Cylasformicarius (F.) (Col., Apionidae) in Central and Southern Africa, J. Appi. Ent. 114, 400402.CrossRefGoogle Scholar
Proshold, F. I. (1983) Mating activity and management of Cylas formicarius elegantulus (Coleóptera: Curculionidae) on sweet potato. Proc. Amer. Soc. Hortic. Sci. Trop. Sect. 27(B), 8192.Google Scholar
Sathula, R. A., Logan, J. M., Munthali, D. C. and Nyirenda, G. K. C. (1997) Adult longevity, fecundity and oviposition characteristics of Cylas puncticollis Boheman on sweetpotatoes. Afr. Crop Sci. J. 5, 3945.CrossRefGoogle Scholar
Scott, G. J. and Ewell, P. T. (1992) Sweetpotato in African food systems, pp. 91104. In Product Development for Root and Tuber Crops. Vol. III Africa. Proceedings of the Workshop on Processing, Marketing and Utilization of Root and Tuber Crops in Africa, October 26-November 2, 1991, Ibadan, Nigeria. (Edited by Scott, G., Ferguson, P. I. and Herrera, J. E.). CIP, Lima, Peru.Google Scholar
Smit, N. E. J. M. (1997) The effect of the indigenous cultural practices of in-ground storage and piecemeal harvesting of sweetpotato on yield and quality loss caused by sweetpotato weevil in Uganda. Agric, Ecosyst. Environ. 64, 191200.Google Scholar
Sutherland, J. A. (1986) A review of the biology and control of the sweetpotato weevil Cylas formicarius (Fab.). Trop. Pest Manage. 32, 304315.CrossRefGoogle Scholar
Wolfe, G. W. (1991) The origin and dispersal of the pest species of Cylas with a key to the pest species groups of the world, pp. 1344. In Sweet Potato Pest Management. A Global Perspective (Edited by Jansson, R. K. and Raman, K. V.). Westview Press, Boulder, Colorado, USA.Google Scholar