Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T09:08:52.011Z Has data issue: false hasContentIssue false

Bioefficacy of enhanced diatomaceous earth and botanical powders on the mortality and progeny production of Acanthoscelides obtectus (Coleoptera: Chrysomelidae), Sitophilus granarius (Coleoptera: Dryophthoridae) and Tribolium castaneum (Coleoptera: Tenebrionidae) in stored grain cereals

Published online by Cambridge University Press:  16 October 2017

Charles Adarkwah*
Affiliation:
University of Energy and Natural Resources, Department of Horticulture and Crop Production, School of Agriculture and Technology, PO Box 214, Sunyani, Ghana Humboldt-Universität zu Berlin, Division Urban Plant Ecophysiology, Faculty of Life Sciences, Lentzeallee 55/57, 14195 Berlin, Germany
Daniel Obeng-Ofori
Affiliation:
University of Energy and Natural Resources, Department of Horticulture and Crop Production, School of Agriculture and Technology, PO Box 214, Sunyani, Ghana
Vanessa Hörmann
Affiliation:
Humboldt-Universität zu Berlin, Division Urban Plant Ecophysiology, Faculty of Life Sciences, Lentzeallee 55/57, 14195 Berlin, Germany
Christian Ulrichs
Affiliation:
Humboldt-Universität zu Berlin, Division Urban Plant Ecophysiology, Faculty of Life Sciences, Lentzeallee 55/57, 14195 Berlin, Germany
Matthias Schöller
Affiliation:
Humboldt-Universität zu Berlin, Division Urban Plant Ecophysiology, Faculty of Life Sciences, Lentzeallee 55/57, 14195 Berlin, Germany Biologische Beratung GmbH, Storkower Str. 55, 10409 Berlin, Germany
Get access

Abstract

Food losses caused by insects during postharvest storage are of paramount economic importance worldwide, especially in Africa. Laboratory bioassays were conducted in stored grains to determine the toxicity of powders of Eugenia aromatica and Moringa oleifera alone or combined with enhanced diatomaceous earth (Probe-A® DE, 89.0% SiO2 and 5% silica aerogel) to adult Sitophilus granarius, Tribolium castaneum and Acanthoscelides obtectus. Adult mortality was observed up to 7 days, while progeny production was recorded at 6–10 weeks. LD50 and LT50 values for adult test insects exposed to plant powders and DE, showed that A. obtectus was the most susceptible towards the botanicals (LD50 0.179% and 0.088% wt/wt for E. aromatica and M. oleifera, respectively), followed by S. granarius. Tribolium castaneum was most tolerant (LD50 1.42% wt/wt and 1.40% wt/wt for E. aromatica and M. oleifera, respectively). The combined mixture of plant powders and DE controlled the beetles faster compared to the plant powders alone. LT50 ranged from 55.7 h to 62.5 h for T. castaneum exposed to 1.0% M. oleifera and 1.0% DE, and 0.5% E. aromatica and 1.0% DE, respectively. Botanicals caused significant reduction of F1 adults compared to the control. Combined action of botanical insecticides with DE as a grain protectant in an integrated pest management approach is discussed.

Type
Research Paper
Copyright
Copyright © icipe 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W. S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.Google Scholar
Adarkwah, C. and Schöller, M. (2012) Biological control of Plodia interpunctella (Lepidoptera: Pyralidae) by single and double releases of two larval parasitoids in bulk stored wheat. Journal of Stored Products Research 51, 15.Google Scholar
Adarkwah, C., Büttner, C., Reichmuth, C., Obeng-Ofori, D., Prozell, S. and Schöller, M (2010a) Ability of the larval ectoparasitoid Habrobracon hebetor (Say, 1836) (Hymenoptera: Braconidae) to locate the rice moth Corcyra cephalonica (Stainton, 1865) (Lepidoptera: Pyralidae) in bagged and bulk stored rice. Journal of Plant Diseases and Protection 117, 6770. doi:10.1007/BF03356337.Google Scholar
Adarkwah, C., Obeng-Ofori, D., Büttner, C., Reichmuth, C. and Schöller, M. (2010b) Bio-rational control of red flour beetle Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) in stored wheat with Calneem® oil derived from neem seeds. Journal of Pest Science 83, 471479.Google Scholar
Adarkwah, C., Fields, P. G., Schöller, M. and Reichmuth, C. (2012) Resistance and physiological differences in the rice weevil Sitophilus oryzae (L.) (Coleoptera: Curculionidae) exposed to diatomaceous earth. Mitteilungen der Deutschen Gesellschaft für allgemeine und angewandte Entomologie. (German Journal of General and Applied Entomology) 18, 433438.Google Scholar
Adarkwah, C., Obeng-Ofori, D., Adler, C., Büttner, C., Reichmuth, C. and Schöller, M. (2011) Integration of Calneem® oil and parasitoids to control Cadra cautella and Corcyra cephalonica in stored grain cereals. Phytoparasitica 39, 223233.Google Scholar
Adarkwah, C., Obeng-Ofori, D., Ulrichs, C. and Schöller, M. (2017) Insecticidal efficacy of botanical food by-products against selected stored-grain beetles by the combined action with modified diatomaceous earth. Journal of Plant Diseases and Protection 124, 255267. doi:10.1007/s41348-016-0068-2.CrossRefGoogle Scholar
Adarkwah, C., Ulrichs, C., Schaarschmidt, S., Badii, B. K., Addai, I. K., Obeng-Ofori, D. and Schöller, M. (2014) Potential of hymenopteran larval and egg parasitoids to control stored-product beetle and moth infestation in jute bags. Bulletin of Entomological Research 104, 534542.Google Scholar
Adedire, C. O. and Lajide, L. (1999) Toxicity and oviposition deterrence of some plant extracts on cowpea storage bruchid, Callosobruchus maculatus Fabricius. Journal of Plant Diseases and Protection 106, 647653.Google Scholar
Anwar, F., Latif, S., Ashraf, M. and Gilani, A. H. (2007) Moringa oleifera: A food plant with multiple medicinal uses. Phytotherapy Research 21, 1725.CrossRefGoogle ScholarPubMed
Arthur, F.H. (2000) Toxicity of diatomaceous earth to red flour beetles and confused flour beetles (Coleoptera: Tenebrionidae): Effects of temperature and relative humidity. Journal of Economic Entomology 93, 526532.Google Scholar
Athanassiou, C. G., Kavallieratos, N. G. and Andris, N. A. (2004) Insecticidal effect of three diatomaceous earth formulations against adults of Sitophilus oryzae (Coleoptera: Curculionidae) and Tribolium confusum (Coleoptera: Tenebrionidae) on oat, rye and triticale. Journal of Economic Entomology 97, 21602167.Google Scholar
Athanassiou, C. G., Kavallieratos, N. G., Tsaganou, F. C., Vayias, B. J., Dimizas, C. B. and Buchelos, C. Th. (2003) Effect of grain type on the insecticidal efficacy of Silico-Sec against Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Crop Protection 22, 11411147.Google Scholar
Athanassiou, C. G., Riudavets, J. and Kavallieratos, N. G. (2011) Preventing stored-product insect infestations in packaged-food products. Stewart Postharvest Review 7, 15.Google Scholar
Athanassiou, C. G., Vayias, B. J., Dimizas, C. B., Kavallieratos, N.G., Papagregoriou, A. S. and Buchelos, C. Th. (2005) Insecticidal efficacy of diatomaceous earth against Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Tribolium confusum du Val (Coleoptera: Tenebrionidae) on stored wheat: influence of dose rate, temperature and exposure interval. Journal of Stored Products Research 41, 4755.Google Scholar
Badii, B. K., Adarkwah, C., Obeng-Ofori, D. and Ulrichs, C. (2014) Efficacy of diatomaceous earth formulations against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in Kersting's groundnut (Macrotyloma geocarpum Harms): Influence of dosage rate and relative humidity. Journal of Pest Science 87, 285294.Google Scholar
Bakkali, F., Averbeck, S., Averbeck, D. and Idaomar, M. (2008) Biological effects of essential oils—A review. Food and Chemical Toxicology 46, 446475.Google Scholar
Bekele, J. A., Obeng-Ofori, D., Hassanali, A. and Nyamasyo, G. N. N. (1995) Products derived from the leaves of Ocimum kilimandscharicum (Labiatae) as post-harvest grain protectants against the infestation of three major stored product insect pests. Bulletin of Entomological Research 85, 361367.Google Scholar
Bharali, R., Tabassum, J. and Azad, M. R. H. (2003) Chemomodulatory effect of Moringa oleifera Lam, on hepatic carcinogen metabolizing enzymes, antioxidant parameters and skin papillomagenesis in mice. Asian Pacific Journal of Cancer Prevention 4,131139.Google Scholar
Bhuiyan, Md. N. I., Begum, J., Nandi, N. C. and Akter, F. (2010) Constituents of the essential oil from leaves and buds of clove (Syzigium caryophylattum (L.) Alston). African Journal of Plant Science 4, 451454.Google Scholar
Broughton, W. J., Hernadez, G., Blair, M., Beebe, S., Gepts, P. and Vanderleyden, J. (2003) Beans (Phaseolus spp.)—model food legumes. Plant and Soil 252, 55128.Google Scholar
Caceres, A., Cabrera, O., Morales, O., Mollinedo, P. and Mendia, P. (1991) Pharmacological properties of Moringa oleifera.1: Preliminary screening for antimicrobial activity. Journal of Ethnopharmacology 33, 213216.Google Scholar
Cáceres, A., Saravia, A., Rizzo, S., Zabala, L., De Leon, E. and Nave, F. (1992) Pharmacologic properties of Moringa oleifera. 2: Screening for antispasmodic, anti-inflammatory and diuretic activity. Journal of Ethnopharmacology 36, 233237.Google Scholar
Daoubi, M., Deligeorgopoulou, A., Macias-Sanchez, A. J., Hernandez-Galan, R., Hitchcock, P. B., Hanson, J. R. and Collado, I. G. (2005) Antifungal activity and biotransformation of diisophorone by Botrytis cinerea . Journal of Agricultural and Food Chemistry 53, 60356039.Google Scholar
Demissie, G., Tefera, T. and Tadesse, A. (2008) Efficacy of Silicosec, filter cake and wood ash against the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) on three maize genotypes. Journal of Stored Products Research 44, 227231.Google Scholar
Deyama, T. and Horiguchi, T. (1971) Studies on the components of essential oil of clove (Eugenia caryophyllata Thumberg) [in Japanese]. Yakugaku Zasshi 91, 13831386.CrossRefGoogle Scholar
Edwards, J. P., Short, J. E. and Abraham, L. (1991) Large-scale evaluation of the insect juvenile hormone analogue fenoxycarb as a long-term protectant of stored wheat. Journal of Stored Products Research 27, 3139.Google Scholar
Eilert, U., Wolters, B. and Nahrstedt, A. (1981) The antibiotic principle of seeds of Moringa oleifera and Moringa stenopetala . Planta Medica 42, 5561.CrossRefGoogle ScholarPubMed
El-Wakeil, N. E. and Saleh, S. A. (2009) Effects of neem and diatomaceous earth against Myzus persicae and associated predators in addition to indirect effects on artichoke growth and yield parameters. Archives of Phytopathology and Plant Protection 42, 11321143.CrossRefGoogle Scholar
Fahey, J. W. (2005) Moringa oleifera: A review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Trees for Life Journal 1, 5.Google Scholar
Fields, P. G. (2006) Effect of Pisum sativum fractions on the mortality and progeny production of nine stored-grain beetles. Journal of Stored Products Research 42, 8696.CrossRefGoogle Scholar
Fields, P. G., Allen, S., Korunic, Z., McLaughlin, A. and Stathers, T. (2003) Standardized testing for diatomaceous earth, pp. 779784. In Proceedings of the 8th International Working Conference on Stored-Product Protection (edited by Credland, P. F., Armitage, D. M., Bell, C. H., Cogan, P. M. and Highley, E.). CAB International, Wallingford, United Kingdom. ISBN 0851996914.Google Scholar
Fields, P. and Korunic, Z. (2000) The effect of grain moisture content and temperature on the efficacy of diatomaceous earths from different geographical locations against stored-product beetles. Journal of Stored Products Research 36, 113.Google Scholar
Gbaye, O. A., Millard, J. C. and Holloway, G. J. (2011) Legume type and temperature effects on the toxicity of insecticide to the genus Callosobruchus (Coleoptera: Bruchidae). Journal of Stored Products Research 47, 812.Google Scholar
Gonzalo, S.-A. (2009) Botanical Insecticides. Facultad de Agronomia, Universidad de Concepcion, Chile. Available: https://ipmworld.umn.edu/silva-aguayo-botanical.Google Scholar
Hassanali, A., Lwande, W., Ole-Sitayo, N., Moreka, L., Nokoe, S. and Chapya, A. (1990) Weevil repellent constituents of Ocimum suave leaves and Eugenia caryophyllata cloves used as grain protectants in parts of eastern Africa. Discovery and Innovation 2, 9195.Google Scholar
Iatrou, S. A., Kavallieratos, N. G., Palyvos, N. E., Buchelos, C. Th. and Tomanovic, S. (2010) Acaricidal effect of different diatomaceous earth formulations against Tyrophagus putrescentiae (Astigmata: Acaridae) on stored wheat. Journal of Economic Entomology 103, 190196.CrossRefGoogle ScholarPubMed
Isman, M. B. (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51, 4566.Google Scholar
Isman, M. B. (2010) Botanical insecticides, deterrents, repellents and oils, pp. 433445. In Industrial Crops and Uses (edited by Singh, B. P.). CABI, UK.Google Scholar
Karthika, S., Ravishankar, M., Mariajancyrani, J. and Chandramohan, G. (2013) Study on phytoconstituents from Moringa oleifera leaves. Asian Journal of Plant Science and Research 3, 6369.Google Scholar
Kavallieratos, N. G., Athanassiou, C. G., Mpassoukou, A. E., Mpakou, F. D., Tomanovic, Ž., Manessioti, T. B. and Papadopoulou, S. Ch. (2012) Bioassays with diatomaceous earth formulations: Effect of species co-occurrence, size of vials and application technique. Crop Protection 42, 170179.CrossRefGoogle Scholar
Kavallieratos, N. G., Athanassiou, C. G., Pashalidou, F. G., Andris, N. S. and Tomanovic, Ž. (2005) Influence of grain type on the insecticidal efficacy of two diatomaceous earth formulations against Rhyzopertha dominica (F) (Coleoptera: Bostrychidae). Pest Management Science 61, 660666.CrossRefGoogle ScholarPubMed
Khan, M. A., Ajab Khan, M., Mujtaba, G. and Hussain, M. (2012) Ethnobotanical study about medicinal plants of Poonch Valley Azad Kashmir. The Journal of Animal & Plant Sciences 22, 493500.Google Scholar
Kim, S.-I., Roh, J.-Y., Kim, D.-H., Lee, H.-S. and Ahn, Y.-J. (2003) Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus chinensis . Journal of Stored Products Research 39, 293303.Google Scholar
Korunic, C. and Rozman, V. (2010) A synergistic mixture of diatomaceous earth and deltamethrin to control stored grain insects. Julius-Kühn-Archiv 425, 894898. doi.org/10.5073/jka.2010.425.058.Google Scholar
Korunic, Z. (1998) Diatomaceous earths, a group of natural insecticides. Journal of Stored Products Research 34, 8797.CrossRefGoogle Scholar
Lale, N. E. S. and Vidal, S. (2003) Effect of constant temperature and humidity on oviposition and development of Callosobruchus maculatus (F.) and Callosobruchus subinnotatus (Pic) on Bambara groundnut Vigna subterranea (L.) Verdcourt. Journal of Stored Products Research 39, 459470.CrossRefGoogle Scholar
Mahdi, S. H. A. and Rahman, Md. K. (2008) Insecticidal effect of some spices on Callosobruchus maculatus (Fabricius) in black gram seeds. University Journal of Zoology Rajshahi University 27, 4750.Google Scholar
Marrufo, T., Nazzaro, F., Mancini, E., Fratianni, F., Coppola, R., De Martino, L. D., Agostinho, A. B. and De Feo, V. (2013) Chemical composition and biological activity of the essential oil from leaves of Moringa oleifera Lam. cultivated in Mozambique. Molecules 18, 1098911000. doi:10.3390/molecules180910989.CrossRefGoogle ScholarPubMed
Matsumoto, I. (1987) Simple method for seed storage, pp. 178189. In Handbook of Grassroots Farming System Practices Part 2. Japan Association for International Collaboration of Agriculture and Forestry, Tokyo, Japan.Google Scholar
Mewis, I. and Ulrichs, Ch. (2001) Action of amorphous diatomaceous earth against different stages of the stored product pests Tribolium confusum, Tenebrio molitor, Sitophilus granarius and Plodia interpunctella . Journal of Stored Products Research 37, 153164.Google Scholar
Nukenine, E. N. (2010) Stored product protection in Africa: Past, present and future. Julius-Kühn Archiv 425, 2641. doi: 10.5073/jka.2010.425.177.Google Scholar
Nukenine, E. N., Adler, C. and Reichmuth, Ch. (2010) Bioactivity of fenchone and Plectranthus glandulosus oil against Prostephanus truncatus and two strains of Sitophilus zeamais . Journal of Applied Entomology 134, 132141.CrossRefGoogle Scholar
Obeng-Ofori, D. (2007) The use of botanicals by resource poor farmers in Africa and Asia for the protection of stored agricultural products. Stewart Postharvest Review 6, 18.Google Scholar
Obeng-Ofori, D. (2010) Residual insecticides, inert dusts and botanicals for the protection of durable stored products against pest infestation in developing countries. Julius-Kühn Archiv 425, 774788. doi:10.5073/jka.2010.425.141.Google Scholar
Obeng-Ofori, D., Reichmuth, Ch., Bekele, J. and Hassanali, A. (1997) Biological activity of 1,8 cineole, a major component of essential oil of Ocimum kenyense (Ayobangira) against stored product beetles. Journal of Applied Entomology 121, 237243.Google Scholar
Oboh, G., Akinbola, I. A., Ademosun, A. O., Sanni, D. M., Odubanjo, O. V., Olasehinde, T. A. and Oyeleye, S. I. (2015) Essential oil from clove bud (Eugenia aromatica Kuntze) inhibit key enzymes relevant to the management of type-2 diabetes and some pro-oxidant induced lipid peroxidation in rats pancreas in vitro . Journal of Oleo Science 64, 775782.Google Scholar
Ofuya, T. I. and Dawodu, E. O. (2002) Aspects of insecticidal action of Piper guineense Schum and Thonn fruit powders against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Nigerian Journal of Entomology 19, 4050.CrossRefGoogle Scholar
Ofuya, T. I., Olotuah, O. F. and Akinyoade, D. O. (2010) The effect of storage on the efficacy of Eugenia aromatica (Baill.) in the control of Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae) pest. Journal of Applied Sciences and Environmental Management 14, 97100.Google Scholar
Ojo, D. O. and Ogunleye, R. F. (2013) Comparative effectiveness of the powders of some underutilized botanicals for the control of Callosobruchus maculatus (Coleoptera: Bruchidae). Journal of Plant Diseases and Protection 120, 227232.Google Scholar
Olufunmilayo, E. A., Adelodun, L. K. and Akintomiwa, O. F. (2012) Moringa oleifera Lam. (Moringaceae) grown in Nigeria: In vitro antisickling activity on deoxygenated erythrocyte cells. Journal of Pharmacy and Bioallied Sciences 4, 118122.Google Scholar
Oyeniyi, E. A., Gbaye, O. A. and Holloway, G. J. (2015) The influence of geographic origin and food type on the susceptibility of Callosobruchus maculatus (Fabricius) to Piper guineense (Schum and Thonn). Journal of Stored Products Research 63, 1521.Google Scholar
Pace-Asciak, C. R., Hahn, S., Diamandis, E. P., Soleas, G. and Goldberg, D. M. (1995) The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: Implications for protection against coronary heart disease. Clinica Chimica Acta 235, 207219.Google Scholar
Park, I.-K., Lee, S.-G., Choi, D.-H., Park, J.-D. and Ahn, Y.-J. (2003) Insecticidal activities of constituents identified in the essential oil from leaves of Chamaecyparis obtusa against Callosobruchus chinensis (L.) and Sitophilus oryzae (L.). Journal of Stored Products Research 39, 375384.Google Scholar
Perez-Mendoza, J., Throne, J. E., Dowell, F. E. and Baker, J. E. (2003) Detection of insect fragments in wheat flour by near-infrared spectroscopy. Journal of Stored Products Research 39, 305312.CrossRefGoogle Scholar
Poswal, M. A. T. and Akpa, A. D. (1991) Current trends in the use of traditional and organic methods for the control of crop pests and diseases in Nigeria. Tropical Pest Management 37, 329333.CrossRefGoogle Scholar
Ramalho de Oliveira, C. F., Luz, L. A., Guedes Paiva, P. M., Breitenbach Barroso Coelho, L. C., Marangoni, S. and Rodrigues Macedo, M. L. (2011) Evaluation of seed coagulant Moringa oleifera lectin (cMoL) as a bioinsecticidal tool with potential for the control of insects. Process Biochemistry 46, 498504.Google Scholar
Rathi, B. S., Bodhankar, S. L. and Baheti, A. M. (2006) Evaluation of aqueous leaves extract of Moringa oleifera Linn for wound healing in albino rats. Indian Journal of Experimental Biology 44, 898901.Google ScholarPubMed
Richards, S., Gibbs, R. A., Weinstock, G. M., Brown, S. J., Denell, R., Beeman, R. W., Gibbs, R., Bucher, G., Friedrich, M., Grimmelikhuijzen, C. J. P., Klingler, M., Lorenzen, M., Roth, S., Schröder, R., Tautz, D., Zdobnov, E. M , ., Muzny, D., Attaway, T., Bell, S., Buhay, C. J. and 171 others (2008) The genome of the model beetle and pest Tribolium castaneum . Nature 452, 949955.Google Scholar
Rigaux, M., Haubruge, E. and Fields, P. G. (2001) Mechanisms for tolerance to diatomaceous earth between strains of Tribolium castaneum . Entomologia Experimentalis et Applicata 101, 3339.Google Scholar
Sánchez-Mariñez, R. I., Cortez-Rocha, M. O., Ortega-Dorame, F., Morales-Valdes, M. and Silveira, M. I. (1997) End-use quality of flour from Rhyzopertha dominica infested wheat. Cereal Chemistry 74, 481483.Google Scholar
Schmidt, G. H. and Streloke, M. (1994) Effect of Acorus calamus (L.) (Araceae) oil and its main compound β-asarone on Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). Journal of Stored Products Research 30, 227235.CrossRefGoogle Scholar
Schöller, M. and Reichmuth, C. (2010) Field trials with the diatomaceous earth SilicoSec® for treatment of empty rooms and bulk grain. Julius-Kühn-Archiv 425, 899905.Google Scholar
Shaaya, E., Kostjukovski, M., Eilberg, J. and Sukprakarn, C. (1997) Plant oils as fumigants and contact insecticides for the control of stored-product insects. Journal of Stored Products Research 33, 715.Google Scholar
Stathers, T. E., Chigariro, J., Mudiwa, M., Mvumi, B. M. and Golob, P. (2002) Small-scale farmer perceptions of diatomaceous earth products as potential stored grain protectants in Zimbabwe. Crop Protection 21, 10491060.CrossRefGoogle Scholar
Stathers, T. E., Denniff, M. and Golob, P. (2004) The efficacy and persistence of diatomaceous earths admixed with commodity against four tropical stored product beetle pests. Journal of Stored Products Research 40, 113123.Google Scholar
Subramanyam, B. and Roesli, R. (2000) Inert dusts, pp. 321380. In Alternatives to Pesticides in Stored-Product IPM (edited by Subramanyam, Bh. and Hagstrum, D. W.). Springer, Boston, MA. Google Scholar
Sugri, I. and Johnson, P. N. T. (2009) Effect of two storage methods on the keeping and sensory qualities of four plantain varieties. African Journal of Food, Agriculture, Nutrition and Development 9, 10911109.Google Scholar
Sulaiman, M. R., Zakaria, Z. A., Bujarimin, A. S., Somchit, M. N., Israf, D. A. and Moin, S. (2008) Evaluation of Moringa oleifera aqueous extract for antinociceptive and anti-inflammatory activities in animal models. Pharmaceutical Biology 46, 838845.Google Scholar
Suthisut, D., Fields, P. G. and Chandrapatya, A. (2011a) Contact toxicity, feeding reduction, and repellency of essential oils from three plants from the ginger family (Zingiberaceae) and their major components against Sitophilus zeamais and Tribolium castaneum . Journal of Economic Entomology 104, 14451454.CrossRefGoogle ScholarPubMed
Suthisut, D., Fields, P. G. and Chandrapatya, A. (2011b) Fumigant toxicity of essential oils from three Thai plants (Zingiberaceae) and their major compounds against Sitophilus zeamais, Tribolium castaneum and two parasitoids. Journal of Stored Products Research 47, 222230.Google Scholar
Talukder, F. A. and Howse, P. E. (1995) Evaluation of Aphanamixis polystachya as a source of repellents, antifeedants, toxicants and protectants in storage against Tribolium castaneum (Herbst). Journal of Stored Products Research 31, 5561.CrossRefGoogle Scholar
Upadhyay, R. K. and Jaiswal, G. (2007) Evaluation of biological activities of Piper nigrum oil against Tribolium castaneum . Bulletin of Insectology 60, 5761.Google Scholar
Vayias, B. J. and Athanassiou, C. G. (2004) Factors affecting the insecticidal efficacy of the diatomaceous earth formulation SilicoSec against adults and larvae of the confused flour beetle, Tribolium confusum DuVal (Coleoptera: Tenebrionidae). Crop Protection 23, 565573.Google Scholar
Verma, A. R., Vijayakumar, M., Mathela, C. S. and Rao, C. V. (2009) In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food and Chemical Toxicology 47, 21962201.Google Scholar
Weaver, D. K., Dunkel, F. V., Ntezurubanza, L., Jackson, L. L. and Stock, D. T. (1991) The efficacy of linalool, major component of freshly-milled Ocimum canum (Sims) (Lamiaceae), for protection against postharvest damage by certain stored product Coleoptera. Journal of Stored Products Research 27, 213220.CrossRefGoogle Scholar
Weaver, D. K. and Petroff, A. R. (2005) Pest management for grain storage and fumigation. Available: http://www.docstoccom/docs/45259080/Pest-Management-for-grain-Storage-and-Fumigation Google Scholar
Yang, Y.-C., Lee, S.-H., Lee, W.-J., Choi, D.-H. and Ahn, Y.-J. (2003) Ovicidal and adulticidal effects of Eugenia caryophyllata bud and leaf oil compounds on Pediculus capitis . Journal of Agricultural and Food Chemistry 51, 48844888.Google Scholar