Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T21:25:46.375Z Has data issue: false hasContentIssue false

Bioassays of duck weed vegetation extracts

Published online by Cambridge University Press:  19 September 2011

M. A. A. Eid
Affiliation:
Faculty of Agriculture, Cairo University, Cairo, Egypt
M. A. E. Kandil
Affiliation:
Faculty of Agriculture, Cairo University, Cairo, Egypt
Eman B. Moursy
Affiliation:
Faculty of Agriculture, Cairo University, Cairo, Egypt
G. E. M. Sayed
Affiliation:
Faculty of Agriculture, Cairo University, Cairo, Egypt
Get access

Abstract

Bioassays against the fourth instar larvae of mosquito, Culex pipiens pipiens showed that the non polar part of the duck weed, Lemna minor extracts has a high insecticidal action. On the other hand, these extracts contained synomones of the duck weed which repelled the ovipositing females. By using concentrations equivalent to LC25, the survival resulting by the n. hexane was the least. The tolerance for the sublethal doses was associated with malformations in all stages. First instar larvae and recent pupae were more susceptible to the duck weed synomones than the other larval instars. The duck weed synomones repelled the ovipositing females of Piophila casei and have had an insecticidal effect on larvae and reduced resulting adults. When larvae of Spodoptera littoralis were subjected to sublethal doses of duck weed extract, malformations in the subsequent stages were found.

Résumé

Les biotitrations des larves du 4ème instar du moustique, Culex pipiens pipiens ont prouvé que l'extrait du côté non-polain du duck weed, Lemna minor a un effet insecticidal, et que cet extrait contient des synomones qui ont un effet répugnant pour les femelles adultes des moustiques. L'utilisation des concentrations équivalentes à LC25 du n. hexane a donné une haute mortalité.

La tolérance coutre les doses sous-mortelles fut accompagnée des malformations de tous les stades. Les premières larves ainsi que les pupes furent les plus sensibles aux synomones.

Les synomones du duck weed n'ont pas seulement un effet répugnant pour les femelles du Piophila casei mals ont aussi un effet insecticidal centre les larves et les adultes. Quand les larves du Spodoptera littoralis furent soumises à des doses sous-mortelles des extraits du duck weed, alors celles-ci donnent des adultes malformées.

Type
Research Articles
Copyright
Copyright © ICIPE 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, W. S. (1925) A method of computing the effectiveness of an insecticide. J. Econ.Entomol. 18, 265267.CrossRefGoogle Scholar
Abraham, C. C. and Ambica, B. (1979) Effect of leaf and kernel extract of neem on moulting and vitellogenesis in Dysdercus cingulatus (Hetcroptera: Pyrrhocoridae). Curr. Sci. 48, 554556.Google Scholar
Ah, S. I., Singh, O. P. and Misra, U. S. (1983) Effectiveness of plant oils against pulse beetle Callosobruchus chinensis Linn. Indian J. Entomol. 45, 69.Google Scholar
Binder, R. G. and Waiss, A. C. Jr (1984) Effects of soybean leaf extracts on growth and mortality of boll worm (Lepidoptera: Noctuidae) larvae. J. econ. Entomol. 77, 15851588.Google Scholar
Chavan, S. R. (1983) Chemistry of alkanes separated from leaves of Azadirachla indica and their larvicidal/insecticidal activity against mosquitoes. Proc. 2nd Int. Neem Conf. Rauischholzhausen, 25–28 May 1983. pp. 5965.Google Scholar
Feuerhake, K. J. and Schmutterer, H. (1982) Einfache verfahren zur Gewinnung und Formulierung von Neem Samenen xtraklen und deren wirkung auf vershiedcne. Schad inseken-z-Pflkrankh, Pfl. Schutz. 89, 737–747. Proc. 2nd Int. Neem Conf. Rauischholzhausen 25–28 May 1983.Google Scholar
Finney, D. J. (1952) Probit Analysis Statistical Treatment of the Sigmoid Response Curve. Cambridge University Press, UK.Google Scholar
Freedman, B., Nowak, L. J., Kwolek, W. F., Berry, E. C. and Guthrie, W. D. (1979) Bioassay for plant-derived pest control agents using the European corn borer. J. econ. Entomol. 72, 541545.Google Scholar
Georghiou, G. P., Metcalf, R. L. and Gidden, F. E. (1966) Carbamate resistance in mosquitoes selection of C. p. pipiens Wiedemann for resistance to Baygon. Bull. WHO 35, 691708.Google Scholar
Guzman, D. R. and Axtell, R. C. (1986) Effect of nutrient concentration in culturing three isolates of the mosquito fungal pathogen, Lagenidium giganteum (Oomycetes: Lagenidiales), on sunflower seed extract. J. Am. Mosq. Control, Assoc. 2, 196200.Google ScholarPubMed
Jotwani, M. G. and Srivastava, K. P. (1983) A review of neem research in India in relation to insects. Proc. 2nd Int. Neem Conf. Rauischholzhausen 25–28 May 1983, pp. 4356.Google Scholar
Kalpage, K. S. P. and Brust, R. A. (1974) Opposition attractant produced by immature Aedes atropatpus. Environ. Entomol. 2, 729730.CrossRefGoogle Scholar
Lambert, L. and Kilen, T. C. (1984) Influence of three soyabean plant genotypes and their Fr intercrosses on the development of five insect species. J. econ. Entomol. 77, 622625.Google Scholar
Lange, W. and Schmutterer, H. (1982) Experiments with synergists to improve the effect of growth disrupting properties of a methanolic extract of seeds of the neem tree (Azadirachla indica). J. Plant Dis. Prot. 89, 258265.Google Scholar
Meisner, J. and Aschcr, K. P. (1983) Insect growth-regulating (IGR) effect of neem products on Spodoptera littoralis. Proc. 2nd Int. Neem Conf. Rauischholzhausen 25–28 May 1983, pp. 345352.Google Scholar
Mikolajczak, K. L., Madrigal, R. V., Smith, C. R. and Reed, D. K. (1984) Insecticidal effects of cyanolipids on three species of stored product insects, European corn borer (Lepidoptera: Pyralidae) larvae, and striped cucumber beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 72, 11441148.CrossRefGoogle Scholar
Rembold, H., Forster, H., Czoppelt, C. H., Rai, P. J. and Sieber, K. P. (1983) The Azadirach tins, a group of insect growth regulators from the neem tree. Proc. 2nd Int. Neem Conf. Rauischholzhausen 25–28 May 1983, pp. 153162.Google Scholar
Saxena, R.C., Liquido, J. and Justo, H.D. (1981) Neem seed oil, a potential anti-feedant for the control of the rice brown planthopper Nilaparvata lugens Proc. 2nd int. Neem Conf. Rauischhohhausen 25–28 May 1983, pp. 171188.Google Scholar
Schluter, U. (1984) Die wirkung Von Azadirachtin auf Gewebe Von inseklen epidermis und imaginalanlagen von Epilachna varivestis Muls (Col., Coccinellidae). Mitt, dtchs Ges. allg. angew. Enlomol. 4 (Proc. 2nd int. Neem Conf. Rauischhohhausen 25–28 May 1983).Google Scholar
Schmutterer, H. and Rembold, H. (1980) Zur wirkung einiger Reinfraktionen aus samen von Azadirachta indica auf Fra Baktivitat und metamorphose von Epilachna varivestis (Col., Coccinellidae). Z. angew. Enlomol. 89, 179188. (Proc. 2nd Int. Neem Conf. Rauischhohhausen 25–28 May 1983).CrossRefGoogle Scholar
Schoonhovcn, A. V. (1978) Use of vegetable oils to protect stored beans from Bruchid attack. J. econ. Enlomol 71, 254257.CrossRefGoogle Scholar
Sombatsiri, K. and Tigvaltanont, S. (1983) Effect of neem extracts on some insect pests of economic importance in Thailand. Proc. 2nd Int. Neem Conf. Rauischhohhausen, 25–28 May 1983, pp. 95100.Google Scholar
Sun, Y. P., Hyman, J. and Colo, C. D. (1950) Toxicity index-an improved method comparing the relative toxicity of insecticides. J. econ. Entomol. 43, 4553.Google Scholar
Suparvarn, P., Knapp, W. F. and Sigafus, P. (1974) Biologically active plant extracts for control of mosquito larvae. Mosq. News 34, 398402.Google Scholar
World Health Organization (1960) Insccticidal rcsistance and vector control.10th reportof World Health Organization, Expert Committee on Insecticides No. 191, p. 98.Google Scholar