Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T03:16:29.611Z Has data issue: false hasContentIssue false

Behavioural basis of plant resistance or susceptibility to insects

Published online by Cambridge University Press:  19 September 2011

K. N. Saxena
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
Get access

Abstract

Differences in the susceptibility or resistance of different plants to an insect are reflected in the magnitude of its population established on them and the resulting damage. The population of an insect on a plant is determined by an interaction between its responses and the plant's characters. As explained previously, the following six main types of responses, operating in as many stages, are involved in the establishment of an insect on a plant: (1) orientation, determining the insect's arrival on or avoidance of a plant in response to its attractant or repellent stimuli; (2) feeding responses, determining the quantity of food ingested from the plant; (3) metabolic responses involving the utilisation of the ingested food and determining the insect's nutrition; (4) development of the insect, if in the larval stage, determined by the quantitative food-intake and nutrition; (5) egg-production in the adult stage, determined by the quantitative food-intake and nutrition; and (6) oviposition.

The first, second and last of the above mentioned responses are behavioural which determine the initial selection or rejection of a plant by an insect. In order, therefore, to understand the principles governing the susceptibility/resistance of plants to an insect species, it is necessary to compare the above mentioned responses to susceptible and resistant plants and, next, to examine the role of the plant characters in determining these responses.

On the basis of the existing literature on the subject, the role of different behavioural responses of insects to plants and their characters in determining their susceptibility or resistance to their insect pests has been considered in this paper.

Résumé

Les différences dans la susceptibilité ou résistances des différentes plantes à un insecte sont reflétées dans l'ampleur de la population de cet insecte établie sur elles ainsi que les degâts y résultant. La population d'un insecte sur une plante est déterminée par une intéraction entre ses réactions et les characteristiques de la plante. Comme il a été expliqué auparavant, six types de réactions principales comportant le méme nombre d'étapes sont impliquées dans l'etablissement d'un insecte sur une plante: (1) orientation, qui détermine si l'insecte s'implante ou évite la plante en réaction au stimuli attractif ou répulsif; (2) réactions d'alimentation qui déterminent la quantité d'aliment ingérée; (3) les métaboliques comportant l'utilisation de la réactions nourriture ingérée et déterminant la nutrition de l'insecte; (4) développement, de l'insecte si it est à l'état larvaire, déterminé par l'absorption quantitative des aliments et la nutrition; (5) la production des oeufs au stade adulte déterminée par l'absorption quantitative des aliments et la nutrition, et (6) l'oviposition.

De ces réactions énumérées plus haut, la première, la deuzième et la derniere sont de nature behavioriste, et déterminent la sélection initiale ou le réjet de la plante par l'insecte. Par conséquent, pour comprendre les principes gouvernant la susceptibilité/résistance des plantes à une espece d'insectes, il est nécessaire de comparer les réactions mentionnées plus haut, aux plantes susceptibles et résistantes et, après examiner le rôle des charactéristiques de la plante déterminer ces réactions.

Sur la base de la documentation existant sur ce sujet, il a été considéré dans cet article le rôle des differentes réactions behavioristes des insectes aux plantes, et leurs charactéristiques dans la détermination de leur susceptibilité ou résistance aux insectes.

Type
Section III: Insect behaviour and host plant resistance
Copyright
Copyright © ICIPE 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atkin, D. J. S. and Hamilton, R. J. (1982) The surface of sorghum. In The Plant Cuticle (Edited by Cutler, D. F., Alvin, K. L. and Price, C. E.), pp. 231237. Academic Press, London.Google Scholar
Balasubramanian, G. and Gopalan, M. (1978) Note on the role of phenolics and minerals in cotton varieties in relation to resistance to leafhopper. Indian J. agric. Sci. 48, 367370.Google Scholar
Beck, S. D. (1965) Resistance of plants to insects. A. Rev. Ent. 10, 207232.Google Scholar
Beck, S. D. and Schoonhoven, L. M. (1980) Insect behaviour and plant resistance. In Breeding Plants Resistant to Insects (Edited by Maxwell, F. G. and Jennings, P. R.), pp. 116135. Wiley, New York.Google Scholar
Cosenza, G. W. and Green, H. B. (1979) Behaviour of tomato fruitworm Heliothis zea (Boddie) on susceptible and resistant lines of processing tomatoes. Hortscience 14, 171173.Google Scholar
Da Costa, C. P. and Jones, C. M. (1971) Cucumber beetle resistance and mite susceptibility controlled by the bitter gene in Cucumis salivus L. Science 172, 11451146.CrossRefGoogle ScholarPubMed
Dethier, V. G. (1947) Chemical Insect Attractants and Repellents. Blackiston, Philadelphia.Google Scholar
Dethier, V. G. (1970) Chemical interactions between plants and insects. In Chemical Ecology (Edited by Sondheimer, E. and Simeone, T. B.), pp. 83102. Academic Press, New York.Google Scholar
Djamin, A. and Pathak, M. D. (1967) The role of silica in resistance to Asiatic rice borer Chilo suppressalis (Walker) in rice varieties. J. econ. Ent. 60, 347351.Google Scholar
Everly, R. T., Guthrie, W. D. and Dicke, F. F. (1979) Attractiveness of corn genotypes to ovipositing European corn borer moths. Agricultural Reviews and Manuals. U.S. Dept Agric, ARM-NC Vol. 8.Google Scholar
Finch, S. (1978) Volatile plant chemicals and their effects on host plant finding by the cabbage rootfly (Delia brassicae). Entomologia exp. appl. 24, 350359.CrossRefGoogle Scholar
Gallun, R. L., Roberts, J. J., Finny, R. E. and Patterson, F. L. (1973) Leaf pubescence of field grown wheat: A deterrent to oviposition by the cereal leaf beetle. J. Environ. Qual. 2, 333334.Google Scholar
Gupta, P. D. and Thorsteinson, A. J. (1960a) Food plant relationships of the diamond back moth (Plutella maculipennis (Curt.)). I. Gustation and olfaction in relation to botanical specificity of the larvae. Entomologia exp. appl. 3, 241250.Google Scholar
Gupta, P. D. and Thorsteinson, A. J. (1960b) Food plant relationships of diamond back moth (Plutella maculipennis (Curt.)). Sensory regulation of oviposition of the adult female. Entomologia exp. appl. 3, 305314.Google Scholar
Guthrie, W. D. and Dicke, F. F. (1972) Resistance of inbred lines of dent corn to leaf feeding by 1st brood European corn borers. Iowa St. J. Sci. 46, 339355.Google Scholar
Horber, E., Leath, K. T., Berrang, B., Marcarian, V. and Hanson, C. H. (1974) Biological activities of saponin contents from Du Puits and Lahantan alfalfa. Entomologia exp. appl. 17, 410424.Google Scholar
Hovanitz, W. (1969) Inherited and/or conditioned changes in host-plant preference in Pieris. Entomologia exp. appl. 12, 729735.CrossRefGoogle Scholar
Hunter, R. C., Leigh, T. F., Lincoln, C., Waddle, B. A. and Bariola, L. A. (1965) Evaluation of selected cross-section of cottons for resistance to the boll weevil. Arkansas Agric. exp. Stn Bull. Vol. 700.Google Scholar
Isley, D. (1928) The relationship of leaf color and leaf size to boll weevil infestation. J. econ. Ent. 21, 553559.Google Scholar
Jackson, D. M., Cheatham, J. S., Pitts, J. M. and Baumhover, A. H. (1983) Ovipositional response of tobacco budworm moths (Lepidoptera: Noctuidae) to tobacco introduction 1112 and NC 2326 in cage tests. J. econ. Ent. 76, 13031308.Google Scholar
Jenkins, J. N. (1976) Boll weevil resistant cottons. In Boll Weevil Suppression, Management, and Elimination Technology, ARS S Vol. 71, pp. 4549. U.S. Dept Agric.Google Scholar
Joshi, A. B. and Rao, S. B. (1959) The problem of breeding Jassid resistant varieties of cotton in India. Indian Cotton Grow. Rev. 13, 270279.Google Scholar
Kawana, T., Saito, T. and Munakata, K. (1968) Study on an attractant of the rice stem borer, Chilo suppressalis Walker. Botyu-Kagaku 33, 122130.Google Scholar
Kim, M., Koh, H., Obata, T., Fukami, H. and Ishii, S. (1976) Isolation and identification of trans-aconitic acid as the antifeedant in barnyard grass against the brown plant-hopper, Nilaparvata lugens (Stol) (Homoptera: Delphacidae). Appl. ent. Zool. 11, 5357.Google Scholar
Klingauf, F. von, Nicker-Wenzel, K. and Klein, W. (1971) Einfluss einigers Wachskomponenten von Vicia faba auf das wirtswahlverhalten von Acyrthosiphon pisum (Harris) (Homoptera: Aphidae). Z. Pfl. Krankh. Pfl. Schutz. 78, 641648.Google Scholar
Klun, J. A., Tipton, C. L. and Brindley, T. A. (1967) 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIM-BOA), an active agent in the resistance of maize to the European corn borer. J. econ. Ent. 60, 15291533.Google Scholar
Kogan, M. and Ortman, E. F. (1978) Antixenosis—a new term proposed to replace Painter's “Nonpreference” modality of resistance. ESA Bull. Vol. 24.Google Scholar
Lukefahr, M. J. and Martin, D. F. (1966) Cotton-plant pigments as a source of resistance to the bollworm and tobacco budworm J. econ. Ent. 59, 176179.Google Scholar
Lukefahr, M. J., Martin, D. F. and Meyer, J. R. (1965) Plant resistance to five Lepidoptera attacking cotton. J. econ. Ent. 58, 516518.Google Scholar
Lukefahr, M. J., Houghtaling, J. E. and Graham, H. M. (1971) Suppression of Heliothis populations with glabrous cotton strains. J. econ. Ent. 63, 11011103.CrossRefGoogle Scholar
Lukefahr, H. J., Houghtaling, J. E. and Cruhm, D. G. (1975) Suppression of Heliothis spp. with cottons containing combinations of resistant characters. J. econ. Ent. 68, 743746.CrossRefGoogle Scholar
Matsumoto, Y. and Thorsteinson, A. J. (1968a) Effect of organic sulphur compounds on oviposition in onion maggot, Hylemya antiqua Meigen (Diptera: Anthomyiidae). Appl. ent. Zool. 3, 512.CrossRefGoogle Scholar
Matsumoto, Y. and Thorsteinson, A. J. (1968b) Olfactory response of larvae of the onion maggot, Hylemia antiqua Meigen (Diptera: Anthomiyiidae) to organic sulphur compounds. Appl. ent. Zool. 3, 107111.Google Scholar
Maxwell, F. G., Jenkins, J. N., Keller, J. C. and Parrot, W. L. (1963) An arrestant and feeding stimulant for the boll weevil in water extracts of cotton plant parts. J. econ. Ent. 56, 449454.Google Scholar
Maxwell, F. G., Lafever, H. N. and Jenkins, J. N. (1966) Influence of the glandless genes in cotton on feeding, oviposition and development of the boll weevil in the laboratory. J. econ. Ent. 59, 585588.CrossRefGoogle Scholar
Maxwell, F. G., Jenkins, J. N. and Parrot, W. L. (1967) Influence of constituents of the cotton plant on feeding, oviposition and development of the boll weevil. J. econ. Ent. 60, 12941297.CrossRefGoogle Scholar
Maxwell, F. G., Jenkins, J. N., Parrot, W. L. and Buford, W. T. (1969) Factors contributing to resistance and susceptibility of cotton and other hosts to the boll weevil Anthonomus grandis. Entomologia exp. appl. 12, 801810.Google Scholar
Mazokhin-Porshnyakov, G. A. (1969) Insect Vision. Plenum Press, New York.Google Scholar
Minyard, J. P., Hardee, D. D., Gueldner, R. C., Thompson, A. C., Wiygul, G. and Hedin, P. A. (1969) Constituents of the cotton bud. compounds attractive to the boll weevil. J. agric. Fd Chem. 17, 10931097.Google Scholar
Moericke, V. (1969) Hostplant specific colour behaviour by Hyalopterus pruni (Aphididae). Entomologia exp. Appl. 12, 524534.Google Scholar
Niles, G. A. (1980) Breeding cotton for resistance to insects pests. In Breeding Plants Resistant to Insects (Edited by Maxwell, F. G. and Jennings, P.), pp. 337369. Wiley, New York.Google Scholar
Norris, D. M. and Kogan, M. (1980) Biochemical and morphological bases of resistance. In Breeding Plants Resistant to Insects, pp. 2361. Wiley, New York.Google Scholar
Painter, R. H. (1951) Insect Resistance in Crop Plants. Macmillan, New York.Google Scholar
Painter, R. H. (1958) Resistance of plants to insects. A. Rev. Ent. 3, 267290.Google Scholar
Patanakmjorn, S. and Pathak, M. D. (1967) Varietal resistance of the Asiatic rice borer, Chilo suppressalis (Lepidoptera: Crambidae). and its association with various plant characteristics. Ann. ent. Soc. Am. 60, 287292.CrossRefGoogle Scholar
Pathak, M. D. (1969) Stem borer and leafhopper and planthopper resistance in rice varieties. Entomologia exp. Appl. 12, 789790.Google Scholar
Pathak, M. D. and Saxena, R. C. (1980) Breeding approaches in rice. In Breeding Plants Resistant to Insects (Edited by Maxwell, F. G. and Jennings, P. R.), pp. 422455. Wiley, New York.Google Scholar
Pathak, M. D. and Dale, A. A. (1983) The biochemical basis of resistance in host plants to insect pests. In Chemistry and World Food Supplies: The New Frontiers, CHEM-RAWN II (Edited by Schemilt, L. W.) pp. 129142.Google Scholar
Peng, Z. K., Tang, M. Y. and Chem, Y. S. (1979) Studies of resistance to brown planthopper in hybrid rice. Scient. Agric. Sinica 2, 7177.Google Scholar
Prokopy, R. J. and Owens, E. D. (1983) Visual detection of plants by herbivorus insects. A. Rev. Ent. 28, 337364.Google Scholar
Reddy, M. S. and Weaver, J. B. Jr (1975) Boll weevil nonpreference associated with several morphological characters in cotton. Proc. Beltwide Cotton Prod. Res. Conf. National Cotton Council, Memphis, Tenn.Google Scholar
Roberts, J. J., Gallun, R. L., Patterson, F. L. and Foster, J. E. (1979) Effects of wheat leaf pubescence on the hessian fly. J. econ. Ent. 72, 211214.Google Scholar
Robinson, J. F., Klun, J. A. and Brindley, T. A. (1978) European corn borer: A nonpreference mechanisms of leaf feeding resistance and its relationship to l,4-benzoxazin-3-one concentration in dent corn tissue. J. econ. Ent. 71, 461465.CrossRefGoogle Scholar
Robinson, J. F., Klun, J. A., Guthrie, W. D. and Brindley, T. A. (1982) European corn borer (Lepidoptera: Pyrallidae) leaf feeding resistance: Dimboa bioassays. J. Kans. ent. Soc. 55, 357364.Google Scholar
Saxena, K. N. (1969) Patterns of insect-plant relationships determining susceptibility or resistance of different plants to an insect. Entomologia exp. appl. 17, 303318.CrossRefGoogle Scholar
Saxena, K. N. (1978) Role of certain environmental factors determining the efficiency of host plant selection by an insect. Entomologia exp. appl. 24, 466478.Google Scholar
Saxena, K. N., Gandhi, J. R. and Saxena, R. C. (1974) Patterns of relationships between certain leafhoppers and plants. Part 1. Responses to plants. Entomologia exp. appl. 17, 303318.Google Scholar
Saxena, K. N. and Saxena, R. C. (1974) Patterns of relationships between certain leafhoppers and plants. Part II. Role of sensory stimuli in orientation and feeding. Entomologia exp. appl. 17, 493503.Google Scholar
Saxena, K. N. and Saxena, R. C. (1975) Patterns of relationships between certain leafhoppers and plants. Part III. Range and interaction of sensory stimuli Entomologia exp. appl. 18, 194206.Google Scholar
Saxena, K. N. and Goyal, S. (1978) Host plant relationships of citrus butterly Papilio demoleus Linn. Part I. Orientation and ovipositional responses. Entomologia exp. appl. 24, 110.CrossRefGoogle Scholar
Saxena, K. N. and Rembold, H. (1984) Attraction of Heliothis armigera (Huebner) larvae by chick pea seed powder constituents. Z. angew. Ent. 97, 145153.Google Scholar
Saxena, R. C. and Pathak, M. D. (1977) Factors affecting resistance of rice varieties to the brown planthopper, N. lugens. Paper presented at the 8th Conference Pest Control Council Phillipines, Bacolod City. May 18–20, 1977.Google Scholar
Schillinger, J. S. and Gallun, R. L. (1968) Leaf pubescence of wheat as a deterrent to the cereal leaf beetle, Oulema melanopus. Ann. ent. Soc. Am. 61, 900903.Google Scholar
Schoonhoven, L. M. (1968) Chemosensory basis of host-plant selection. A. Rev. Ent. 13, 115136.Google Scholar
Schoonhoven, L. M. (1981) Chemical mediators between plants and phytophagous insects. In Semiochemicals: Their Role in Pest Control (Edited by Nordlund, D. A.), pp. 3150. Wiley, New York.Google Scholar
Schuster, M. F. and Maxwell, F. G. (1974) The impact of nectariless cotton on plant bugs, bollworms, and beneficial insects. Proceedings Beltwide Cotton Producers Research Conference. National Cotton Council, Memphis, Tenn., pp. 8687.Google Scholar
Smith, C. M., Frazier, J. L. and Knight, W. E. (1976) Attraction of female clover head weevil, Hypera meles (F.), to Trifolium spp. flower volatiles. J. Insect Physiol. 22, 15171521.Google Scholar
Smith, C. M., Wilson, R. F. and Brim, C. A. (1979) Feeding behaviour of Mexican bean beetle on leaf extracts of resistant and susceptible soybean genotypes. J. econ. Ent. 72, 374377.Google Scholar
Sogawa, K. and Pathak, M. D. (1970) Mechanisms of brown planthopper resistance to Mudgo variety of rice (Hemiptera: Delphacidae). Appl. ent. Zool. 5, 145158.Google Scholar
Staedler, E. (1978) Chemoreception of host plant chemicals by ovipositing females of Delia (Hylemya) brassicae. Entomologia exp. appl. 24, 711720.Google Scholar
Stephens, S. G. and Lee, H. S. (1961) Further studies on the feeding and oviposition preferences of the boll weevil (Anthonomus grandis). J. econ. Ent. 54, 10851090.CrossRefGoogle Scholar
Sutherland, O. R. W., Hutchins, R. F. N. and Wearing, C. H. (1974) The role of the hydrocarbon alpha-farnesene in the behaviour of codling moth larvae and adults. In Experimental Analysis of Behaviour (Edited by Barton Browne, L.), pp. 249263. Springer-Verlag, Berlin.Google Scholar
Thibout, E., Auger, J. and Lecomte, C. (1982) Host plant chemicals responsible for attraction and oviposition in Acrolepiopsis assectella. Proceedings 5th International Symposium Insect-Plant Relationships, Wageningen, pp. 107115.Google Scholar
Thorsteinson, A. J. (1960) Host selection in phytophagous insects. A. Rev. Ent. 5, 193218.CrossRefGoogle Scholar
Waiss, A. C. Jr, Chan, B. G., Elliger, C. A., Wiseman, B. R., McMillian, W. W., Widstrom, N. W., Zuber, M. S. and Keaster, A. J. (1979) Maysin, a flavone glycoside from corn silks with antibiotic activity toward corn earworm. J. econ. Ent. 72, 256258.Google Scholar
Webster, J. A., Gage, S. H. and Smith, D. H. Jr (1973) Suppression of the cereal leaf beetle with resistant wheat. Environ. Ent. 2, 10891091.CrossRefGoogle Scholar
Widstrom, N. W., McMillian, W. W. and Wiseman, B. R. (1979) Ovipositional preference of the corn earworm and development of trichomes on two exotic corn selections. Environ. Ent. 8, 833839.CrossRefGoogle Scholar
Wiseman, B. R., Widstrom, N. W. and McMillian, W. W. (1977) Ear characteristics and mechanisms of resistance. Fla Ent. 59, 305308.Google Scholar
Wiseman, B. R., Widstrom, N. W. and McMillian, W. W. (1981a) Influence of corn silks on corn earworm feeding response. Fla Ent. 64, 395399.Google Scholar
Wiseman, B. R., Widstrom, N. W. and McMillian, W. W. (1981b) Effects of ‘Antigua-2D-118’ resistant corn on fall armyworm feeding and survival. Fla Ent. 64, 515519.CrossRefGoogle Scholar
Woodhead, S. (1983) Surface chemistry of Sorghum bicolor and its importance in feeding by Locusta migratoria. Physiol. Ent. 8, 345352.CrossRefGoogle Scholar
Woodhead, S. and Bernays, E. A. (1978) The chemical basis of resistance of Sorghum bicolor to attack by Locusta migratoria. Entomologia exp. appl. 24, 123144.Google Scholar
Yoshihara, T., Sogawa, K., Pathak, M. D., Juliano, B. O. and Sakamura, S. (1980) Oxalic acid as a sucking inhibitor of the brown planthopper in rice (Delphacidae: Homoptera). Entomologia exp. appl. 27, 149155.Google Scholar