Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T21:35:16.410Z Has data issue: false hasContentIssue false

Application of mixtures of Metarhizium anisopliae var. acridum and cyhalothrin against the Senegalese grasshopper in Senegal

Published online by Cambridge University Press:  01 September 2008

O.K. Douro Kpindou*
Affiliation:
Biological Control Centre for Africa, International Institute of Tropical Agriculture, 08 B.P. 0932Cotonou, Benin
A. Niassy
Affiliation:
Direction de la Protection des Végétaux, Laboratoire de Zoologie Agricole, KM 15 Route de Rufisque, B.P. 20054Thiaroye Dakar, Senegal:
K. Badji
Affiliation:
Direction de la Protection des Végétaux, Laboratoire de Zoologie Agricole, KM 15 Route de Rufisque, B.P. 20054Thiaroye Dakar, Senegal:
C. Kooyman
Affiliation:
Fondation Agir pour l'Education et la Santé, B.P. 6792Dakar, Senegal
Get access

Abstract

From 2002 to 2004, three field trials were conducted in Senegal to compare the efficacy of a new biopesticide for grasshopper control, based on the entomopathogenic fungus Metarhizium anisopliae var. acridum Driver & Milner, with mixtures of this biopesticide and cyhalothrin, a widely used pyrethroid insecticide to control the Senegalese grasshopper Oedaleus senegalensis Krauss. The aim of these trials was to obtain a knockdown effect without compromising the environmental credentials of the biopesticide too much. During the first two trials, 50 ha (2002) and 25 ha (2003) plots were treated with Metarhizium at a rate of 50 g/ha, cyhalothrin at a rate of 40 g/ha, a mixture of Metarhizium at a rate of 25 g/ha and cyhalothrin at a rate of 20 g/ha. For the third trial in 2004, several mixtures of cyhalothrin at a rate of 10 g/ha and Metarhizium at dose rates of 6.25, 12.5 and 25 g/ha were prepared. These mixtures were compared with 50 g/ha of Metarhizium, 40 g/ha of cyhalothrin and 10 g/ha of cyhalothrin on 25 ha experimental plots. The volume application rate for all trials was 1 l/ha. The Metarhizium applications resulted in a slow but long-lasting reduction of grasshopper numbers. By contrast, cyhalothrin produced a rapid reduction, but grasshopper numbers re-increased a few days after application, except in 2003, when grasshopper densities in the surrounding areas were low. The mixtures caused a similarly fast reduction in grasshopper numbers, but this lasted throughout the 3 week post-application assessment period. These trials demonstrated that adding a low dose of a pyrethroid insecticide to a slow-acting biopesticide can increase the speed of population reduction, while retaining the latter's long-lasting effect. A bonus is that the price of the combination is lower than that of each product at the recommended dose rates. Since the insecticide is added at a low dose, its environmental impact is reduced compared with the full-dose insecticide only treatment.

Type
Research Paper
Copyright
Copyright © ICIPE 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bateman, R. P., Carey, M., Batt, D., Prior, C., Abraham, Y., Moore, D., Jenkins, N. and Fenlon, J. (1996) Screening for virulent isolates of entomopathogenic fungi against the desert locust, Schistocerca gregaria (Forskål). Biocontrol Science and Technology 6, 549560.CrossRefGoogle Scholar
Bateman, R. P., Carey, M., Moore, D. and Prior, C. (1993) The enhanced infectivity of Metarhizium flavoviridae in oil formulations to desert locusts at low humidities. Annals of Applied Biology 122, 145152.CrossRefGoogle Scholar
Brader, L. (1988) Control of grasshoppers and locusts. Proceedings of the Brighton Crop Protection Conference – Pests and Diseases, 283289.Google Scholar
Cheke, R. A. (1990) A migrant pest in the Sahel: the Senegalese grasshopper Oedaleus senegalensis. Philosophical Transactions of the Royal Society of London, Series B 328, 539553.Google Scholar
Cheke, R. A., Fishpool, L. D. C. and Forrest, G. A. (1980) Oedaleus senegalensis (Krauss) (Orthoptera: Acrididae: Oedipodinae). An account of the 1977 outbreak in West Africa and notes on eclosion under laboratory conditions. Acrida 9, 107132.Google Scholar
Dobson, H. M. (2001) Desert Locust Guidelines. 4 – Control. FAO, Rome. 85 pp.Google Scholar
Douro Kpindou, O. K., Gbongboui, C., Badou, R., Paa-Kwessi, E., Ackonor, J. B. and Langewald, J. (2005) Optimisation de l'application du Metarhizium anisopliae var. acridum sur le criquet puant (Zonocerus variegatus, Orthoptera: Pyrgomorphidae). International Journal of Tropical Insect Science 25, 251258.Google Scholar
Douro Kpindou, O. K., Lomer, C. J., Langewald, J., Togo, T. and Sagara, D. (2001) Effet de l'application d'un mélange lambda-cyhalothrin (pesticide chimique) et de spores de Metarhizium anisopliae (Metarhizium flavoviridae) var. acridum Driver & Milner (biopesticide) appliqué sur les larves de sauteriaux au Mali. Journal of Applied Entomology 125, 249253.CrossRefGoogle Scholar
Douro Kpindou, O. K., Shah, P. A., Langewald, J., Lomer, C. J., van der Pau, H., Sidibé, A. and Daffé, C. O. (1997) Essais sur l'utilisation d'un biopesticide (Metarhizium flavoviride) pour le contrôle des sauteriaux au Mali de 1992 à 1994. Journal of Applied Entomology 121, 285291.Google Scholar
FAO (2002) Mission FAO/PAM d'évaluation des récoltes et des approvisionnements alimentaires au Sénégal, 13 décembre 2002, Rapport spécial 2002. http://www.fao.org/docrep/005/y8165f/y8165f00.htm.Google Scholar
Henderson, C. F. and Tilton, E. W. (1955) Tests with acaricides against the brown wheat mite. Journal of Economic Entomology 48, 157161.CrossRefGoogle Scholar
Joffe, S. R. (1995) Desert Locust Management - a Time For a Change. World Bank Discussion Papers No. 284. The World Bank, Washington, DC, USA.CrossRefGoogle Scholar
Kooyman, C. and Abdalla, O. M. (1998) Application of Metarhizium flavoviridae (Deuteromycotina: Hyphomycetes) spores against the tree locust, Anacridium melanorhodon (Orthoptera: Acrididae), in Sudan. Biocontrol Science and Technology 8, 215219.CrossRefGoogle Scholar
Kooyman, C., Bateman, R. P., Langewald, J., Lomer, C., Ouambama, Z. and Thomas, M. (1997) Operational-scale application of entomopathogenic fungi for control of Sahelian grasshoppers. Proceedings of the Royal Society B: Biological Sciences 264, 541546.CrossRefGoogle Scholar
Kooyman, C. and Godonou, I. (1997) Infection of Schistocerca gregaria (Orthoptera: Acrididae) hoppers by Metarhizium flavoviridae (Deuteromycotina: Hyphomycetes) conidia in an oil formulation applied under desert conditions. Bulletin of Entomological Research 87, 105107.CrossRefGoogle Scholar
Langewald, J., Kooyman, C., Douro Kpindou, O. K., Lomer, C., Dahmoud, A. O. and Mohamed, H. O. (1997) Field treatment of desert locust (Schistocerca gregaria Forskål) hoppers in the field in Mauritania with an oil formulation of the entomopathogenic fungus Metarhizium flavoviridae. Biocontrol Science and Technology 7, 603611.CrossRefGoogle Scholar
Langewald, J., Ouambama, Z., Mamadou, A., Peveling, R., Stolz, I., Bateman, R., Attignon, S., Blanford, S., Arthurs, S. and Lomer, C. (1999) Comparison of a synthetic insecticide with a mycoinsecticide for the control of Oedaleus senegalensis Krauss (Orthoptera: Acrididae) and other Sahelian grasshoppers at operational scale. Biocontrol Science and Technology 9, 199214.CrossRefGoogle Scholar
McDonald, D. (1988) Locusts and grasshoppers - a continuing threat of Africa. International Pest Control 30, 3638.Google Scholar
Moore, D., Reed, M., Le Patourel, G., Abraham, J. and Prior, C. (1992) Reduction of feeding by the desert locust, Schistocerca gregaria, after infection with Metarhizium flavoviridae. Journal of Invertebrate Pathology 60, 304307.CrossRefGoogle Scholar
OTA (1990) A Plague of Locusts - Special Report. Office of Technology Assessment (OTA)-F-450. US Government Printing Office, Washington, DC, USA. 129 pp.Google Scholar
Peveling, R., Attignon, S., Langewald, J. and Ouambama, Z. (1999) An assessment of the impact of biological and chemical grasshopper control agents on ground-dwelling arthropods in Niger, based on presence/absence sampling. Crop Protection 18, 323339.CrossRefGoogle Scholar
PRéLISS, (2006) A Regional Programme for Environmentally Sound Grasshopper Control in the Sahel: Final Technical Report. DANIDA, Copenhagen. 47 pp.Google Scholar
Prior, C., Carey, M., Abraham, Y. J., Moore, D. and Bateman, R. P. (1995) Development of a bioassay method for the selection of entomopathogenic fungi virulent to the desert locust, Schistocerca gregaria (Forskål). Journal of Applied Entomology 119, 567573.CrossRefGoogle Scholar
Prior, C., Lomer, C. J., Herren, H., Paraïso, A., Kooyman, C. and Smit, J. J. (1992) The IIBC/IITA/DFPV collaborative research programme on the biological control of locusts and grasshoppers, pp. 159180. In Biological Control of Locusts and Grasshoppers (Edited by Lomer, C. J. and Prior, C.). CAB International, Wallingford.Google Scholar
Prior, C. and Streett, D. (1997) Strategies for use of entomopathogenic agents in the biological control of locusts and grasshoppers. Memoirs of the Entomological Society of Canada 171, 525.CrossRefGoogle Scholar
Sanyang, S. and Van Emden, H. F. (1996) The combined effects of the fungus Metarhizium flavoviridae Gams & Rozsypal and the insecticide cypermethrin on Locusta migratoria migratorioides (Reiche & Fairmaire) in the laboratory. International Journal of Pest Management 42, 183187.CrossRefGoogle Scholar
SAS® 9.1, (2003) Qualification Tools Users Guide. SAS Institute Inc., Cary, NC.Google Scholar
Stolz, I., Nagel, P., Lomer, C. and Peveling, R. (2002) Susceptibility of the hymenopteran parasitoids Apoanagyrus ( = Epidinocarsis) lopezi (Encyrtidae) and Phanerotoma sp. (Braconidae) to the entomopathogenic fungus Metarhizium anisopliae var. acridum (Deuteromycotina: Hyphomycetes). Biocontrol Science and Technology 12, 349360.CrossRefGoogle Scholar