Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T13:17:32.724Z Has data issue: false hasContentIssue false

Adipokinetic Hormones and Lipoprotein Interconversions During Locust Flight

Published online by Cambridge University Press:  19 September 2011

A. M. Th. Beenakkers
Affiliation:
Department of Experimental Zoology, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
Get access

Abstract

During prolonged flight, locusts predominantly utilize lipids for energy generation. Lipid stores are mainly located in the fat body. Flight is accompanied by release of adipokinetic hormones from the corpora cardiaca. Under the influence of these hormones, fat body triacylglycerol is converted to diacylglycerol, which is released into the haemolymph. This release requires the presence of specific lipoproteins. The lipid mobilizing effect of adipokinetic hormone on the fat body is attended by the association of a high density lipophorin and a non-lipid containing protein, both already present in the haemolymph, and the increased amount of released lipid to form a new lipoprotein, low density lipophorin. Upon delivery of the lipid to the flight muscles, participating proteins dissociate again and can be reused for lipid uptake at the fat body (lipoprotein shuttle system). The flight-specific metabolic systems could be starting-points for new devices in control strategies.

Résumé

Durant le vol prolongé, le criquet utilise surtout les lipides comme source d'énergie. Les réserves de lipides sont principalement localisées dans le corps gras. Le vol est accompagné par la libération d'hormones adipokinétique sécretées par les corpora cardiaca. Sous l'influence de ces hormones, le triacylglycérol du corps gras est transformé en diacylglycérol, qui est libéré dans l'hémolymphe. Cette libération demande la présence de lipoprotéines spécifiques. Parallèlement à l'effet de mobilisation des lipides de l'hormone adipokinétique dans le corps gras, il y a un regroupement d'une lipophorine de haute densité avec une protéine sans lipide, les deux composants étant déjâ présent dans l'hémolymphe. Ce regroupement associé avec les lipides mobilisés forme une nouvelle lipoprotéine: la lipophorine de basse densité. Après la répartition des lipides dans les muscles du vol, le complexe des protéines est dissocié à nouveau et peut-être réutilisé pour prendre des lipides au corps gras (système de navette de lipoprotéines). La particularité du système métabolique du vol pourrait être le départ pour un moyen stratégique de contrôle du criquet.

Type
Articles
Copyright
Copyright © ICIPE 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beenakkers, A. M. Th., Van der Horst, D. J. and Van Marrewijk, W. J. A. (1985a) Insect lipids and lipoproteins, and their role in physiological processes. Prog. Lipid Res. 25, 1967.CrossRefGoogle Scholar
Beenakkers, A. M. Th., Bloemen, R. E. B., De Vlieger, T. A., Van der Horst, D. J. and Van Marrewijk, W. J. A. (1985b) Insect adipokinetic hormones. Peptides 6, suppl. 3, 437–444.CrossRefGoogle ScholarPubMed
Beenakkers, A. M. Th., Chino, H. and Law, J. H. (1988) Lipophorin nomenclature. Insect Biochem. 18, 12.Google Scholar
Candy, D. J., Hall, L. J. and Spencer, J. M. (1976) The metabolism of glycerol in the locust Schistocerca gregaria during flight. J. Insect Physiol. 22, 583587.CrossRefGoogle Scholar
Carlsen, J., Herman, W. S., Christensen, M. and Josefsson, L. (1979) Characterization of a second peptide with adipokinetic and red pigment-concentrating activity from the locust corpora cardiaca. Insect Biochem. 9, 497501.CrossRefGoogle Scholar
Cheeseman, P. and Goldsworthy, G. J. (1979) The release of adipokinetic hormone during flight and starvation in Locusta. Gen. Comp. Endocrinol. 37, 3543.CrossRefGoogle ScholarPubMed
Chino, H. and Kitazawa, K. (1981) Diacylglycerol-carrying lipoprotein of hemolymph of the locust and some insects. J. Lipid. Res. 22, 10421052.CrossRefGoogle ScholarPubMed
Chino, H., Downer, R. G. H. and Takahashi, K. (1986) Effect of adipokinetic hormone on the structure and properties of lipophorin in locusts. J. Lipid Res. 27, 2129.Google Scholar
Diederen, J. H. B., Maas, H. A., Pel, H. J., Schooneveld, H., Jansen, W. F. and Vullings, H. G. B. (1987) Co-localization of the adipokinetic hormones I and II in the same glandular cells and in the same secretory granules of corpus cardiacum of Locusta migratoria and Schistocerca gregaria. Cell Tissue Res. 249, 379389.Google Scholar
Gäde, G., Goldsworthy, G. J., Kegel, G. and Keller, R. (1984) Single step purification of locust adipokinetic hormones I and II by reverse-phase high-performance liquid chromatography, and amino-acid composition of the hormone II. Hoppe Seylers Z. Physiol. Chem. 365, 393398.CrossRefGoogle Scholar
Goldsworthy, G. J., Mordue, W. and Guthkelch, J. (1972) Studies on insect adipokinetic hormones. Gen. Comp. Endocrinol. 18, 545551.Google Scholar
Goldsworthy, G. J. and Wheeler, C. H. (1984) Adipokinetic hormones in locusts. In Biosynthesis, Metabolism and Mode of Action of Invertebrate Hormones (Edited by Hoffmann, J. and Porchet, M.), pp. 126135. Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
Kanost, M. R., Boguski, M. S., Freeman, M., Gordon, J., Wyatt, G. R. and Wells, M. A. (1988) Primary structure of apolipophorin-III from the migratory locust, Locusta migratoria. J. Biol. Chem. 263, 1056810573.Google Scholar
Kashiwasaki, Y. and Ikai, A. (1985) Structure of apoproteins in insect lipophorin. Archs Biochem. Biophys. 237, 160169.CrossRefGoogle Scholar
Kawooya, J. K., Meredith, S. C., Wells, M. A., Kezdy, F. J. and Law, J. H. (1986) Physical and surface properties of insect apolipophorin III. J. Biol. Chem. 261, 1358813591.Google Scholar
Lok, C. M. and Van der Horst, D. J. (1980) Chiral 1, 2-diacylglycerols in the haemolymph of the locust, Locusta migratoria. Biochim. biophys. Acta 618, 8087.Google Scholar
Mwangi, R. W. and Goldsworthy, G. J. (1977) Diglyceride-transporting lipoproteins in Locusta. J. Comp. Physiol. 114, 177190.Google Scholar
Orchard, I. and Lange, A. B. (1983) The hormonal control of haemolymph lipid during flight in Locusta migratoria. J. Insect Physiol. 29, 639642.CrossRefGoogle Scholar
Oudejans, R. C. H. M., Kooiman, F. P., Schulz, T. F. K. and Beenakkers, A. M. Th. (1990) In vitro biosynthesis of locust adipokinetic hormones: isolation and identification of the bioactive peptides and their pro-hormones. Proc. First Int. Symp. Chrom. Isol. Insect Hormones, Pheromones and Related Compounds (Edited by McCaffery, A. R. and Wilson, J. D.), pp. 103194). Plenum Press, New York.Google Scholar
Pruss, R. M., Mezey, E., Forman, D. S., Eiden, L. E., Hotchkiss, A. J., Di-Maggio, D. A. and O'Donohue, T. L. (1986) Enkephalin and neuropeptide Y: two colocalized neuropeptides are independently regulated in primary cultures of bovine chromaffin cells. Neuropeptides 7, 315327.Google Scholar
Schulz, T. K. F., Van der Horst, D. J., Amesz, H., Voorma, H. O. and Beenakkers, A. M. Th. (1987) Monoclonal antibodies specific for apoproteins of lipophorins from the migratory locust. Arch. Insect Biochem. Physiol. 6, 97107.CrossRefGoogle Scholar
Shapiro, J. P., Law, J. H. and Wells, M. A. (1988) Lipid transport in insects. A. Rev. Entomol. 33, 297318.Google Scholar
Stone, J. V., Mordue, W., Batley, K. E. and Morris, H. R. (1976) Structure of locust adipokinetic hormone, a hormone that regulates lipid utilization during flight. Nature (London) 263, 207211.Google Scholar
Stone, J. V. and Mordue, W. (1979) Isolation of granules containing adipokinetic hormone from locust corpora cardiaca by differential centrifugation. Gen. Comp. Endocrinol. 39, 543547.Google Scholar
Tietz, A. and Weintraub, H. (1980) The stereospecific structure of haemolymph and fat body 1, 2-diacylglycerol from Locusta migratoria. Insect Biochem. 10, 6163.CrossRefGoogle Scholar
Van Antwerpen, R., Linnemans, W. A. M., Van der Horst, D. J. and Beenakkers, A. M. Th. (1988) Immunocytochemical localization of lipophorins in the flight muscles of the migratory locust (Locusta migratoria) at rest and during flight. Cell Tissue Res. 252, 661668.Google Scholar
Van der Horst, D. J., Van Doorn, J. M. and Beenakkers, A. M. Th. (1979) Effects of the adipokinetic hormone on the release and turnover of haemolymph diglycerides and on the formation of the diglyceride-transporting lipoprotein system during locust flight. Insect Biochem. 9, 627635.Google Scholar
Van der Horst, D. J., Stoppie, D. J. P., Huybrechts, R., De Loof, A. and Beenakkers, A. M. Th. (1981a) Immunological relationships between the diacylglycerol-transporting lipoproteins in the haemolymph of Locusta. Comp. Biochem. Physol. (B) 70, 387392.Google Scholar
Van der Horst, D. J., Van Doorn, J. M., De Keijzer, A. N. and Beenakkers, A. M. Th. (1981b) Interconversions of diacylglycerol-transporting lipoproteins in the haemolymph of Locusta migratoria. Insect Biochem. 11, 717723.Google Scholar
Van der Horst, D. J., Abbink, J. H. M., Van Doorn, J. M., Van Marrewijk, W. J. A. and Beenakkers, A. M. Th. (1983) Glycerol dynamics and metabolism during flight of the locust, Locusta migratoria. Insect Biochem. 13, 4555.Google Scholar
Van der Horst, D. J., Van Heusden, M. C., Schulz, T. K. F. and Beenakkers, A. M. Th. (1987a) Adipokinetic hormone-induced lipophorin transformations during locust flight. In Molecular Entomology (Edited by Law, J.), pp. 247256. Alan R. Liss, New York.Google Scholar
Van der Horst, D. J., Beenakkers, A. M. Th., Van Doorn, J. M., Gerritse, K. and Schulz, T. K. F., (1987b) Adipokinetic hormone-induced lipid mobilization and lipophorin interconversions in fifth larval instar locusts. Insect Biochem. 17, 799808.Google Scholar
Van der Horst, D. J., Ryan, R. O., Van Heusden, M. C., Schulz, T. K. F., Van Doorn, J. M., Law, J. H. and Beenakkers, A. M. Th. (1988) An insect lipoprotein hybrid helps to define the role of apolipophorin III. J. Biol. Chem. 263, 20272033.Google Scholar
Van Heusden, M. C., Van der Horst, D. J. and Beenakkers, A. M. Th. (1984) In vitro studies on hormone-stimulated lipid mobilization from fat body and interconversion of haemolymph lipoproteins of Locusta migratoria. J. Insect Physiol. 30, 685693.Google Scholar
Van Heusden, M. C., Van der Horst, D. J., Van Doorn, J. M., Wes, J. and Beenakkers, A. M. Th. (1986) Lipoprotein lipase activity in the flight muscles of Locusta migratoria and its specificity for haemolymph lipoproteins. Insect Biochem. 16, 517523.Google Scholar
Van Heusden, M. C., Van der Horst, D. J., Voshol, J. and Beenakkers, A. M. Th. (1987) The recycling of protein components of the flight-specific lipophorin in Locusta migratoria. Insect Biochem. 17, 771776.Google Scholar
Van Marrewijk, W. J. A., Van den Broek, A. Th. M. and Beenakkers, A. M. Th. (1980) Regulation of glycogenolysis in the locust fat body during flight. Insect Biochem. 10, 675679.Google Scholar
Van Marrewijk, W. J. A., Van den Broek, A. Th. M. and Beenakkers, A. M. Th. (1989) Mode of action of adipokinetic hormone in the control of glycogenolytic activity in fat body of the migratory locust. Gen. Comp. Endocrinol. 74, 306307.Google Scholar
Wheeler, C. H. and Goldsworthy, G. J. (1983) Protein-lipoprotein interactions in the haemolymph of Locusta during action of adipokinetic hormone: the role of CL-proteins. J. Insect Physiol. 29, 349354.Google Scholar
Wheeler, C. H., Van der Horst, D. J. and Beenakkers, A. M. Th. (1984) Lipolytic activity in the flight muscles of Locusta migratoria measured with haemolymph lipoproteins as substrates. Insect Biochem. 14, 261266.Google Scholar