Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T12:20:23.222Z Has data issue: false hasContentIssue false

Susceptibility status of Anopheles gambiae sensu stricto (Diptera: Culicidae) to pyrethroid and carbamate insecticides in the Greater Accra region of Ghana, West Africa

Published online by Cambridge University Press:  01 September 2009

Tolu T. Adeniran
Affiliation:
Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
Charles A. Brown
Affiliation:
Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
William Rogers
Affiliation:
Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana Naval Medical Research Centre, Malaria Program, Silver Spring, Maryland, USA
Michael D. Wilson
Affiliation:
Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
Maxwell A. Appawu
Affiliation:
Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
Daniel A. Boakye*
Affiliation:
Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
*
Get access

Abstract

Pyrethroids are the insecticides of choice for the treatment of bednets for malaria control. Pyrethroid resistance in Anopheles spp. vectors may adversely impact malaria control measures, and therefore it is important to know the initial level of pyrethroid resistance before pyrethroid-treated bednets are introduced. Furthermore, a search for replacement insecticides is necessary to manage any eventual high-resistance levels to pyrethroid insecticides that may affect the effectiveness of treated bednets. This study reports on the susceptibility of Anopheles gambiae s.s. exposed for 1 h to the pyrethroid insecticide permethrin and the carbamate insecticide propoxur, at eight localities in the Greater Accra region of Ghana. The observed mortality rates ranged between 21–92% and 92–100% to permethrin and propoxur, respectively. The results also showed a reduction in the knockdown time (KD50 and KD95) in propoxur (mean KD50 = 20 min and mean KD95 = 31 min) when compared with permethrin (mean KD50 = 47 min and mean KD95 = 87 min). The results suggest that permethrin may not be effective in all areas. Where pyrethroid resistance is a problem, propoxur could be an alternative for indoor residual spraying and for insecticide-treated materials such as curtains and eave screens.

Type
Research Paper
Copyright
Copyright © ICIPE 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W. S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.CrossRefGoogle Scholar
Adasi, K. (2001) Studies on the insecticide usage and pyrethroid resistance in populations of Anopheles gambiae sensu stricto (Diptera: Culicidae) in the Greater Region of Ghana. MPhil Entomology Thesis, Zoology Department, University of Ghana, Legon.Google Scholar
Adasi, K. and Hemingway, J. (2009) Susceptibility to three pyrethroids and detection of knockdown resistance mutation in Ghanaian Anopheles gambiae sensu strico. Journal of Vector Ecology 33, 255262.CrossRefGoogle Scholar
Awolola, T. S., Oduolaa, O. A., Strode, C., Koekemoer, L. L., Brooke, B. and Ranson, H. (2008) Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene doi:101016/j.trstmh.2008.08.021.Google ScholarPubMed
Binka, F. N., Kubaje, A., Adjuik, M., Williams, L. A., Lengeler, C., Maude, G. H., Armah, G. E., Kajihara, B., Adiamah, J. H. and Smith, P. G. (1996) Impact of permethrin impregnated bednets on child mortality in Kassena-Nankana district, Ghana: a randomized controlled trial. Tropical Medicine and International Health 1, 147154.CrossRefGoogle ScholarPubMed
Chandre, F., Darrier, F., Manga, L., Akogbeto, M., Faye, O., Mouchet, J. and Guillet, P. (1999 a) Status of pyrethroid resistance in Anopheles gambiae sensu lato. Bulletin of the World Health Organization 77, 230234.Google ScholarPubMed
Chandre, F., Darriet, F., Manguin, S., Brengues, C., Carnevale, P. and Guillet, P. (1999 b) Pyrethroid cross resistance spectrum among populations of Anopheles gambiae s.s. from Côte d'lvoire. Journal of American Mosquito Control Association 15, 5359.Google Scholar
Chandre, F., Brengues, C., Dossou-Yovo, J., Ma, G. S., Darriet, F., Diabate, A., Carnevale, P. and Guillet, P. (1999 c) Current distribution of a pyrethroid resistance gene (kdr) in Anopheles gambiae complex from West Africa and further evidence for reproductive isolation of the Mopti form. Parasitologia 41, 319322.Google ScholarPubMed
Coetzee, M., van Wyk, P., Booman, M., Koekemoer, L. L. and Hunt, R. H. (2006) Insecticide resistance in malaria vector mosquitoes in a gold mining town in Ghana and implications for malaria control. Bulletin de la Societe de Pathologie Exotique 99, 400403.Google Scholar
Collins, F. H., Mendez, M. A., Razmussen, M. O., Mehaffey, P. C., Besansky, N. J. and Finnerty, V. (1987) A ribosomal RNA gene probe differentiates member species of Anopheles gambiae complex. American Journal of Tropical Medicine and Hygiene 37, 3741.CrossRefGoogle ScholarPubMed
Corbel, V., N'Guessan, R., Brengues, C., Chandre, F., Djogbenou, L., Martin, T., Akogbeto, M., Hougard, J. M. and Rowland, M. (2007) Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Tropica 101, 207216.CrossRefGoogle ScholarPubMed
Curtis, C. F. (1985) Theoretical models of the use of insecticide mixtures for the management of resistance. Bulletin of Entomological Research 75, 259265.CrossRefGoogle Scholar
Curtis, C. F., Hill, N. and Kasim, K. (1993) Are there effective resistance management strategies for vectors of human diseases? Biological Journal of the Linnean Society 48, 318.CrossRefGoogle Scholar
Curtis, C. F., Miller, J. E., Hodjati, M. F., Kolaczinski, J. H. and Kasumba, I. (1998) Can anything be done to maintain the effectiveness of pyrethroid-impregnated bednets against malaria vectors? Philosophical Transactions of the Royal Society of London Bulletin of Biological Sciences 353, 17691775.CrossRefGoogle ScholarPubMed
Cuzin-Ouattara, N., Van den Broek, A. H. A., Habluetzel, A., Diabaté, A., Sanogo-Ilboudo, E., Diallo, D. A., Cousens, S. N. and Esposito, F. (1999) Wide-scale installation of insecticide-treated curtains confers high levels of protection against malaria transmission in a hyperendemic area of Burkina Faso. Transactions of the Royal Society of Tropical Medicine and Hygiene 93, 473479.CrossRefGoogle Scholar
Habluetzel, A., Diallo, D. A., Esposito, F., Lamizana, L., Pagnoni, F., Lengeler, C., Traoré, C. and Cousens, S. N. (1997) Do insecticide-treated curtains reduce all-cause child mortality in Burkina Faso? Tropical Medicine and International Health 2, 855862.CrossRefGoogle ScholarPubMed
Hargreaves, K., Koekemoer, L. L., Brooke, B. D., Hunt, R. H., Mtembu, J. and Coetzee, M. (2000) Anopheles funestus is resistant to pyrethroid insecticides in South Africa. Medical and Veterinary Entomology 14, 190194.CrossRefGoogle ScholarPubMed
Ilboudo-Sanogo, E., Cuzin-Ouattara, N., Diallo, D. A., Cousens, S. N., Esposito, F., Habluetzel, A., Sanon, S. and Ouédraogo, A. P. (2001) Insecticide-treated materials, mosquito adaptation and mass effect: entomological observations after five years of vector control in Burkina Faso. Transactions of the Royal Society of Tropical Medicine and Hygiene 95, 353360.CrossRefGoogle ScholarPubMed
Kahindi, C. S. (2005) Resistance mechanisms and susceptibility to organophosphates, carbamates and pyrethroids in Anopheles gambiae s.l. Giles (Diptera: Culicidae) in Hohoe District, Ghana. MPhil Entomology Thesis, African Regional Postgraduate Program in Insect Science, University of Ghana, Legon.Google Scholar
Klinkenberg, E., McCall, P., Wilson, M. D., Amerasinghe, F. P. and Donnelly, M. J. (2008) Impact of urban agriculture on malaria vectors in Accra, Ghana. Malaria Journal 7, 151.CrossRefGoogle ScholarPubMed
Kolaczinski, J. H. and Curtis, C. F. (2004) Investigation of negative cross-resistance as a resistance-management tool for insecticide-treated nets. Journal of Medical Entomology 41, 930934.CrossRefGoogle ScholarPubMed
Kristan, M., Fleischmann, H., Della Torre, A., Stich, A. and Curtis, C. F. (2003) Pyrethroid resistance/susceptibility and differential urban/rural distribution of Anopheles arabiensis and An. gambiae s.s. malaria vectors in Nigeria and Ghana. Medical and Veterinary Entomology 17, 326332.CrossRefGoogle Scholar
Kurtak, D., Meyer, R., Ocran, M., Ouedraogo, M., Renaud, P., Sawadogo, R. O. and Tele, B. (1987) Management of insecticide resistance in control of the Simulium damnosum complex by the Onchocerciasis Control Programme, West Africa: potential use of negative correlation between organophosphate resistance and pyrethroid susceptibility. Medical and Veterinary Entomology 1, 137146.CrossRefGoogle ScholarPubMed
Lengeler, C. (2004) Insecticide-treated bednets and curtains for preventing malaria. Cochrane Database of Systematic Reviews, Issue 2. Art. No. CD000363. doi:10.1002/14651858.CD000363.pub2.CrossRefGoogle Scholar
Majori, G., Sabatinelli, G. and Coluzzi, M. (1987) Efficacy of permethrin-impregnated curtains for malaria vector control. Medical and Veterinary Entomology 1, 185192.CrossRefGoogle ScholarPubMed
Martinez-Torres, D., Chandre, F., Williams, M. S., Darriet, F., Bergé, J. B., Devonshire, A. L., Guillet, P., Pasteur, N. and Pauron, D. (1998) Molecular characterisation of pyrethroid knockdown resistance (kdr) in the major malaria vector, Anopheles gambiae s.s. Insect Molecular Biology 7, 179184.CrossRefGoogle ScholarPubMed
Scott, J. A., Brogdon, W. G. and Collins, F. H. (1993) Identification of single specimens of the Anopheles gambiae complex by polymerase chain reaction. American Journal of Tropical Medicine and Hygiene 49, 520529.CrossRefGoogle ScholarPubMed
Vulule, J. M., Beach, R. F., Atieli, F. K., McAllister, J. C., Brogdon, W. G., Roberts, J. M., Mwangi, R. W. and Hawley, W. A. (1999) Elevated oxidase and esterase levels associated with permethrin tolerance in An. gambiae from Kenyan villages using permethrin-impregnated nets. Medical and Veterinary Entomology 13, 239244.CrossRefGoogle Scholar
World Health Organisation (1998) Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. WHO unpublished document, WHO/CDS/CPC/MAL/98.12.Google Scholar