Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T08:59:50.489Z Has data issue: false hasContentIssue false

Role of micro- and nanozooplankton in marine food webs

Published online by Cambridge University Press:  19 September 2011

Michèle Laval-Peuto
Affiliation:
Groupe de Recherches Marines, Laboratoire de Protistologie Marine, Faculté des Sciences, Pare Valrose, 06034 Nice Cedex, France
John F. Heinbokel
Affiliation:
The Johns Hopkins University, Shady Side Campus, Chesapeake Bay Institute, 4800 Atwell Road, Shady Side, MD 20764-0037
O. Roger Anderson
Affiliation:
Lamont-Doherty Geological Observatory of Columbia University, Palisades, NY 10964, U.S.A.
Fereidoun Rassoulzadegan
Affiliation:
Station Zoologique, UA 716 CNRS, 06230 Villefranche-sur-Mer, France
Barry F. Sherr
Affiliation:
University of Georgia, Marine Institute, Sapelo Island, GA 31327, U.S.A.
Get access

Extract

Besides distinguishing between ‘zooplankton’ and ‘phytoplankton’, one of the more useful ways for oceanographers to classify planktonic organisms is by size (e.g. Sieburth et al., 1978). Of the free-living protozoa in the marine plankton, most fall into the ‘microplankton’ (20–200 μm, including many of the sarcodinans and ciliates as well as a number of larval metazoa and the larger phytoplankton) and ‘nanoplankton’ (2–20 μm, including the smaller ciliates and most of the heterotrophic flagellates as well as most of the phytoplankton).

Type
Research Article
Copyright
Copyright © ICIPE 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, O. R. (1976) A cytoplasmic fine structure study of two spumellaria and their symbionts. Mar. Micropal. 1, 8189.Google Scholar
Anderson, O. R. (1977) Fine structure of a marine amoeba associated with a blue-green alga in the Sargasso Sea. J. Protozool. 24, 370376.Google Scholar
Anderson, O. R. (1983) Radiolaria. Springer, New York.Google Scholar
Anderson, O. R. (1984) Cellular specialization and reproduction in planktonic foraminifera and Radiolaria. In Marine Plankton Life Cycle Strategies (Edited by Steidinger, K. A. and Walker, L. M.), pp. 3536. Chemical Rubber Co. Press, Cleveland, Ohio.Google Scholar
Anderson, O. R. and Hoeffler, W. (1979) Fine structure of a marine proteomyxid and cytochemical changes during encystment. J. Ultrastruct. Res. 66, 276287.Google Scholar
Anderson, O. R., Spindler, M., , A. W. H. and Hemleben, Ch. (1979) Trophic activity of planktonic Foraminifera. J. mar. Biol. Ass. U.K. 58, 791799.Google Scholar
Anderson, O. R., Swanberg, N. R. and Bennett, P. (1984) An estimate of predation rate and relative preference for algal versus crustacean prey by a spongiose skeletal radiolarian. Mar. Biol. 78, 205207.Google Scholar
Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A. and Thingstad, F. (1983) The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257263.Google Scholar
Barber, R. T., White, A. W. and Siegelman, H. W. (1969) Evidence for a cryptomonad symbiont in the ciliate Cyclotrichium meunieri. J. Phycol 5, 8688.CrossRefGoogle ScholarPubMed
Beers, J. R. (1982) An introduction and historical overview. Ann. Inst. Océanogr., Paris 58, 514.Google Scholar
Blackbourn, D. J. (1974) The feeding biology of Tintinnid Protozoa and some other inshore microzooplankton. Ph.D. thesis, University of British Columbia.Google Scholar
Blackbourn, D. J., Taylor, F. J. R. and Blackbourn, J. (1973) Foreign organelle retention by ciliates. J. Protozool. 20, 286288.Google Scholar
Borsheim, K. Y. (1984) Clearance rates of bacteria-sized particles by freshwater ciliates, measured with monodisperse fluorescent latex beads. Oecologia 63, 286288.Google Scholar
Burney, C. M., Davis, P. G., Johnson, K. M. and Sieburth, J. McN. (1981) Dependence of dissolved carbohydrate concentrations upon small scale nanoplankton and bacterioplankton distributions in the western Sargasso Sea. Mar. Biol. 65, 289296.Google Scholar
Burney, C. M., Davis, P. G., Johnson, K. M. and Sieburth, J. McN. (1982) Diel relationships of microbial trophic groups and in situ dissolved carbohydrate dynamics in the Caribbean Sea. Mar. Biol. 67, 311322.Google Scholar
Cachon, J. (1964) Contribution à l'étude des Péridinens parasites. Cytologie. Cycles évolutifs. Annls Sci. nat., Zool., Paris 6, 1158.Google Scholar
Capriulo, G. M. and Carpenter, E. J. (1980) Grazing by 35 to 202 µm microzooplankton in Long Island Sound. Mar. Biol. 56, 319326.Google Scholar
Caron, D. A., Davis, P. G., Madin, L. P. and Sieburth, J. McN. (1982) Heterotrophic bacterial and bacterivorous protozoa in oceanic macroaggregates. Science 218, 795797.Google Scholar
Davis, P. G. and Sieburth, J. McN. (1984) Estuarine and oceanic microflagellate predation of actively growing bacteria: estimation by frequency of dividing-divided bacteria. Mar. Ecol. Prog. Ser. 19, 237246.Google Scholar
Ducklow, H. W. (1983) Production and fate of bacteria in the oceans. Bio Science 33, 494501.Google Scholar
Fauré-Fremiet, E. (1924) Contribution à la connaissance des infusoires planktoniques. Bull. biol. Fr. Belg. suppl. 6 19, 1171.Google Scholar
Fenchel, T. (1980a) Suspension feeding in ciliated protozoa: functional response and particle size selection. Microbiol. Ecol. 6, 111.Google Scholar
Fenchel, T. (1980b) Suspension feeding in ciliated protozoa: feeding rates and ecological significances. Microbiol. Ecol. 6, 1325.Google Scholar
Fenchel, T. (1980c) Suspension feeding in ciliated protozoa: structure and function of feeding organelles. Arch. Protistenk. 123, 239260.CrossRefGoogle Scholar
Fenchel, T. (1982) Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as consumers of bacteria. Mar. Ecol. Prog. Ser. 9, 3542.Google Scholar
Fuhrman, J. A. and McManus, G. B. (1984) Do bacteria-sized marine eukaryotes consume significant bacterial production? Science 224 12571260.Google Scholar
Gast, V. (1985) Bacteria as a food source for micro-zooplankton in the Schlei Fjord and Baltic Sea with special reference to ciliates. Mar. Ecol. Prog. Ser. 22, 107120.Google Scholar
Heinbokel, J. F. (1978a) Studies on the functional role of tintinnids in the Southern California Bight. 1. Grazing and growth rate in laboratory cultures. Mar. Biol. 47, 177189.Google Scholar
Heinbokel, J. F. (1978b) Studies on the functional role of tintinnids in the Southern California Bight. 2. Grazing rates of field populations. Mar. Biol. 47, 191197.Google Scholar
Heinbokel, J. F. and Beers, J. R. (1979) Studies on the functional role of tintinnids in the Southern California Bight. 3. Grazing impact of natural assemblages. Mar. Biol. 52, 2332.Google Scholar
Johnson, P. W. and Sieburth, J. McN. (1979) Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24, 928935.Google Scholar
Landry, M. R., Haas, L. W. and Fagerness, V. L. (1984) Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii. Mar. Ecol. Prog. Ser. 16, 127133.Google Scholar
Laval-Peuto, M. (1983) Tontonia appendiculariformis, a ciliate with three membrane-bounded chloroplasts. Phylogenetic interpretations. Protistologica 29, 464.Google Scholar
Laval-Peuto, M. and Febvre, M. (1986) On plastid symbiosis in Tontonia appendiculariformis (Ciliophora, Oligotri-china). BioSystems. In press.Google Scholar
Li, W. K. W., Subba Rao, D. V., Harrison, W. G., Smith, J. C., Cullen, J. J., Irwin, B. and Platt, T. (1983) Autotrophic picoplankton in the tropical ocean. Science 219 292295.Google Scholar
Linley, E. A. S., Newell, R. C. and Lucas, M. I. (1983) Quantitative relationships between phytoplankton, bacteria and heterotrophic microflagellates in shelf waters. Mar. Ecol. Prog. Ser. 12, 7789.Google Scholar
Lohmann, H. (1901) Ueber das Fischen mit Netzen aus Müllergaze Nr. 20 zu dem Zwecke quantitativer Un-tersuchungen des Auftriebs. Wiss. Meeresunters. Abt. Kiel, N.F. 7, 188.Google Scholar
Lohmann, H. (1908) Untersuchungen zur Feststellung des vollständigen Gehaltes des Meeres an Plankton. Wiss. Meeresunters. Abt. Kiel, N.F. 10, 131370.Google Scholar
Lohmann, H. (1922) Zentrifugenplankton und Hochseeströmung. Int. Revue ges. Hydrobiol. Hydrogr. 10, 603682.Google Scholar
Murray, J. (1897) On the distribution of the pelagic foraminifera at the surface and on the floor of the ocean. Nat. Sci. 11, 1727.Google Scholar
Newell, S. Y., Sherr, B. F., Sherr, E. B. and Fallon, R. D. (1983) Bacteria response to presence of eukaryotic inhibitors in water from a coastal marine environment. Mar. Environ. Res. 10, 147157.CrossRefGoogle Scholar
Pace, M. (1985) Experimental evaluation of the fluorescent microsphere technique for measuring protozoan grazing rates. Abstract of the 48th Annual Meeting of ASLO. Minneapolis.Google Scholar
Packard, T. T., Blasco, D. and Barber, R. T. (1978) Mesodiniwn rubrum in the Baja California upwelling system. In Upwelling Systems (Edited by Boje, R. and Tomczak, M.), pp. 7389. Springer, Berlin.Google Scholar
Platt, T., Subba Rao, D. V. and Irwin, B. (1983) Photosynthesis of picoplankton in the oligotrophic ocean. Nature 300, 702704.Google Scholar
Rassoulzadegan, F. (1975) Ecologie et relations trophiques du microzooplancton dans un écosystème néritique. Thèse Université P. et M. Curie (Paris, France).Google Scholar
Rassoulzadegan, F. (1978) Dimensions et taux d'ingestion des particules consommees par un tintinnide: Favella ehrenbergii (Clap& Lachm.) Jörg., cilié pélagique. Ann. Inst. Océanogr., Paris 54, 1724.Google Scholar
Rassoulzadegan, F. and Etienne, M. (1981) Grazing rate of the tintinnid Stenosemella ventricosa (Clap. & Lachm.) Jörg. on the spectrum of the naturally occurring particu-late matter from a Mediterranean neritic area. Limnol. Oceanogr. 26, 258270.Google Scholar
Rassoulzadegan, F. and Sheldon, R. W. (1986) Predator-prey interaction of nano-zooplankton and bacteria in an oligotrophic marine environment. Limnol. Oceanogr. In press.Google Scholar
Rhumbler, L. (1911) Die Foraminiferen (Thalamophoren) der Plankton-Expedition. Erster Teil: Die allgemeinen Organisationsverhaltnisse der Foraminiferen. Plankton-Exped. Humboldt-Stiftung Ergebn. 3, 1331.Google Scholar
Sherr, B. F., Sherr, E. B. and Newell, S. Y. (1984) Abundance and productivity of heterotrophic nanoplankton in Georgia coastal waters. J. Plank. Res. 6, 195202.Google Scholar
Sherr, E. B., Sherr, B. F., Fallon, R. D. and Newell, S. Y. (1986) Small aloricate ciliates as a component of marine heterotrophic nanoplankton. Limnol. Oceanogr. 31, 177183.Google Scholar
Sieburth, J. McN. and Davis, P. G. (1982) The role of heterotrophic nanoplankton in the grazing and nurturing of planktonic bacteria in the Sargasso and Caribbean Seas. Ann. Inst. Océanogr., Paris 58, 249260.Google Scholar
Sieburth, J. McN., Smetacek, V. and Lenz, J. (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23, 12561263.Google Scholar
Sorokin, Y. I. (1977) The heterotrophic phase of plankton succession in the Japan Sea. Mar. Biol. 41, 107117.Google Scholar
Spittler, P. (1973) Feeding experiments with tintinnids. Oikos 15, 128132.Google Scholar
Stoecker, D., Guillard, R. R. L. and Kavee, R. M. (1981) Selective predation by Favella ehrenbergii (Tintinnia) on and among dinoflagellates. Biol. Bull. 160, 136145.Google Scholar
Swanberg, N. R. and Anderson, O. R. (1985) The nutrition of radiolarians: trophic activity of some solitary spumellaria. Limnol. Oceanogr. 30, 646652.Google Scholar
Taylor, F. J. R. (1982) Symbioses in marine microplankton. Ann. Inst. Oceanogr., Paris 58, 6190.Google Scholar
Waterbury, J. B., Watson, S. W., Guillard, R. R. L. and Brand, L. E. (1977) Widespread occurrence of a unicellular, marine, planktonic cyanobacterium. Nature, 277 293294.Google Scholar
Williams, P. J., le, B. (1981) Incorporation of micro-heterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforsch. 5, 128.Google Scholar
Wright, R. T. and Coffin, R. B. (1984) Measuring micro-zooplankton grazing on planktonic marine bacteria by its impact on bacterial production. Microbiol. Ecol. 10, 137149.Google Scholar
Yentsch, C. M., Horan, P. K., Muirhead, K., Dortch, Q., Haugen, E., Legendre, L., Murphy, L. S., Perry, M. J., Phinney, D. A., Pomponi, S. A., Spinrad, R. W., Wood, M., Yentsch, C. S. and Zahuranec, B. J. (1983) Flow cytometry and cell sorting: A technique for analysis and sorting of aquatic particles. Limnol. Oceanogr. 28, 12751280.CrossRefGoogle Scholar