Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T22:56:50.912Z Has data issue: false hasContentIssue false

Resistance mechanism to the pod-sucking bug Clavigralla tomentosicollis (Hemiptera: Coreidae) in the cowpea IT86D-716 variety

Published online by Cambridge University Press:  21 December 2010

Clementine L. Dabire-Binso
Affiliation:
Institut de l'Environnement et de Recherches Agricoles, CREAF de Kamboinsé, 01 BP 476, Ouagadougou01, Burkina Faso
Niango Malick Ba*
Affiliation:
Institut de l'Environnement et de Recherches Agricoles, CREAF de Kamboinsé, 01 BP 476, Ouagadougou01, Burkina Faso
Antoine Sanon
Affiliation:
Laboratoire d'entomologie Fondamentale et Appliquée, Unité de Formation en Sciences de la Vie et de la Terre, Université de Ouagadougou, 03 BP 7021, Ouagadougou03, Burkina Faso
Issa Drabo
Affiliation:
Institut de l'Environnement et de Recherches Agricoles, CREAF de Kamboinsé, 01 BP 476, Ouagadougou01, Burkina Faso
Kouahou Foua Bi
Affiliation:
Université de Cocody, UFR Biosciences, Abidjan, Côte d'Ivoire
*
Get access

Abstract

Resistance mechanisms to the pod-sucking bug (PSB) Clavigralla tomentosicollis Stäl, in cowpea genotype IT86D-716, were studied in field and laboratory. Non-preference was evaluated on three cowpea varieties (IT86D-716, Moussa local and KVx396-4-5-2D) through measuring differences in population parameters and extent of damage under field and laboratory conditions. Antibiosis was evaluated based on development parameters of C. tomentosicollis when reared on pods of the aforementioned varieties. The variety IT86D-716 consistently exhibited both non-preference and antibiosis resistance mechanisms to C. tomentosicollis. A chemical analysis of the pods was conducted to identify compounds conferring antibiosis. Several compounds including cyanogenic heterosides, flavonoids, tannins and trypsin inhibitors were present in pods of IT86D-716. Evidence suggests that antibiosis due to these compounds may contribute to the resistance to PSB. In the case of antibiosis, 5-day long exposures were adequate to observe nymphal mortality. Based on this finding, a fast, reliable and low-cost screening of pods can be carried out in the laboratory for identification of lines that are C. tomentosicollis resistant.

Type
Research Paper
Copyright
Copyright © ICIPE 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bressani, R. (1985) Nutritive value of cowpea, pp. 353359. In Cowpea Research, Production and Utilization (edited by Singh, S. R. and Rachie, K. O.). Wiley, Winchester.Google Scholar
Beck, S. D. (1965) Resistance of plants to insects. Annual Review of Entomology 10, 207232.CrossRefGoogle Scholar
Broadway, R. M. and Duffey, S. S. (1986) Plant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exiqua. Journal of Insect Physiology 32, 827833.CrossRefGoogle Scholar
Bruneton, J. (ed.) (1993) Pharmacolognosie-phytochimie des plantes médicinales. 2nd edn. Lavoisier, Paris. 543 pp.Google Scholar
Chavan, J. K. and Kadam, S. S. (1987) Cowpea, pp. 121. In Handbook of World Food Legumes: Nutritional Chemistry, Processing Technology and Utilization (Edited by Salunkhe, D. K. and Kadam, S. S.). CRC Press, Inc., Boca Raton, Florida.Google Scholar
Chiang, H. S. and Singh, S. R. (1988) Pod hairs as a factor in Vigna vexillata resistance to the pod-sucking bug, Clavigralla tomentosicollis. Entomologia Experimentalis et Applicata 47, 195199.CrossRefGoogle Scholar
Ciulei, I. (1982) Methodology for Analysis of Vegetable Drug: Practical Manual on Industrial Utilization of Medicine and Aromatic Plants (edited by Ministry of Chemical Industry of Romania). UNIDO, Bucharest. 292 pp.Google Scholar
Dabiré, L. C. B. (2001) Etude de quelques paramètres biologiques et écologiques de Clavigralla tomentosicollis Stäl 1855 (Hemiptera: Coreidae), punaise suceuse des gousses de niébé [Vigna unguiculata (L.) Walp.] dans une perspective de lutte durable contre l'insecte au Burkina Faso. Doctoral thesis, Université de Cocody, Abidjan, Côte d'Ivoire. 179 pp.Google Scholar
Dabiré, C. L. B., Kini, F. B., Ba, M. N., Dabiré, R. A. and Fouabi, K. (2005) Effet du stade de développement des gousses de niébé sur la biologie de la punaise suceuse Clavigralla tomentosicollis Stäl. (Hemiptera: Coreidae). International Journal of Tropical Insect Science 25, 18.CrossRefGoogle Scholar
Egwuatu, R. I. and Taylor, T. A. (1977) Studies on the biology of Acanthomia tomentosicollis (Stal) (Hemiptera: Coreidae) in the field and insectary. Bulletin of Entomological Research 67, 249257.CrossRefGoogle Scholar
Ehlers, J. D., Fery, R. L. and Hall, A. E. (2002) Cowpea breeding in the USA: new varieties and improved germplasm, pp. 6277. In Challenges and Opportunities for Enhancing Sustainable Cowpea Production (edited by Fatokun, C. A., Tarawali, S. A., Singh, B. B., Kormawa, P. M. and Tamò, M.). Proceedings of the 3rd World Cowpea Conference held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, 4–8 September 2000. IITA, Ibadan.Google Scholar
FAOSTAT (2007) Available at:http://faostat.fao.org (accessed 18 September 2008).Google Scholar
Fatokun, C. A. (2002) Breeding cowpea for resistance to insect pests: attempted crosses between cowpea and Vigna vexillata, pp. 5261. In Challenges and Opportunities for Enhancing Sustainable Cowpea Production (edited by Fatokun, C. A., Tarawali, S. A., Singh, B. B., Kormawa, P. M. and Tamò, M.). Proceedings of the 3rd World Cowpea Conference held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, 4–8 September 2000. IITA, Ibadan.Google Scholar
Gatehouse, A. M. R. and Boulter, D. (1983) Assessment of the antimetabolic effects of trypsin inhibitors from cowpea (Vigna unguiculata) and other legumes on development of the bruchid beetle Callosobruchus maculatus. Journal of the Science of Food and Agriculture 34, 345350.CrossRefGoogle Scholar
Gatehouse, A. M. R., Gatehouse, J. A., Dobie, P., Kilminster, A. M. and Boulter, D. (1979) Biochemical basis of insect resistance in Vigna ungiculata. Journal of the Science of Food and Agriculture 30, 948958.CrossRefGoogle Scholar
Grayer, R. J., Kimmins, F. M., Padgham, D. E., Harborne, J. B. and Rao, D. V. R. (1992) Condensed tannin levels and resistance of groundnuts (Arachis hypogea) against Aphis craccivora. Phytochemistry 31, 37953800.CrossRefGoogle Scholar
Green, P. W. C., Stevenson, P. C., Simmonds, M. S. J. and Sharma, H. C. (2003) Phenolic compounds on the pod-surface of pigeonpea, Cajanus cajan, mediate feeding behavior of Helicoverpa armigera larvae. Journal of Chemical Ecology 29, 811821.CrossRefGoogle ScholarPubMed
Hedin, P. A., Jenkins, J. N., Collum, D. H., White, W. H., Parrott, W. L. and MacGown, M. W. (1983) Cyanidin-3-/l-glucoside, a newly recognized basis for resistance in cotton to the tobacco budworm Heliothis virescens (Fab.) (Lepidoptera: Noctuidae). Experientia 39, 799801.CrossRefGoogle Scholar
Howe, R. W. (1971) A parameter for expressing the suitability of an environment for insect development. Journal of Stored Products Research 7, 6365.CrossRefGoogle Scholar
Jackai, L. E. N. and Inang, E. E. (1992) Developmental profiles of two cowpea pests on resistant and susceptible Vigna genotypes under constant temperatures. Journal of Applied Entomology 113, 217227.CrossRefGoogle Scholar
Jackai, L. E. N., Nokoe, S., Tayo, B. O. and Koona, P. (2001) Inferences on pod wall and seed defences against the brown cowpea coreid bug, Clavigralla tomentosicollis Stal. (Hem. Coreidae) in wild and cultivated Vigna species. Journal of Applied Entomology 125, 277286.CrossRefGoogle Scholar
Johnson, E. T. and Patrick, F. D. (2004) Differentially enhanced insect resistance, at a cost, in Arabidopsis thaliana constitutively expressing a transcription factor of defensive metabolites. Journal of Agricultural and Food Chemistry 52, 51355138.CrossRefGoogle Scholar
Koona, P., Osisanya, E. O., Jackai, L. E. N., Tamo, M. and Markham, R. H. (2002 a) Resistance in accessions of cowpea to the coreid pod-bug Clavigralla tomentosicollis (Hemiptera: Coreidae). Journal of Economic Entomology 95, 12811288.CrossRefGoogle Scholar
Koona, P., Osisanya, E. O., Jackai, L. E. N., Tamo, M., Reeves, J. and Hughes, J. A. (2002 b) Pod surface characteristics in wild and cultivated Vigna species and resistance to the coreid bug Clavigralla tomentosicollis Stal. (Hemiptera: Coreidae). Insect Science and Its Application 22, 17.Google Scholar
Koona, P., Osisanya, E. O., Lajide, L., Jackai, L. E. N. and Tamo, M. (2003) Assessment of chemical resistance of wild and cultivated Vigna species to the brown pod-bug Clavigralla tomentosicollis Stal. (Hem., Coreidae). Journal of Applied Entomology 127, 293298.CrossRefGoogle Scholar
Lattanzio, V., Arpaia, S., Cardinali, A., Di Venere, D. and Linsalata, V. (2000) Role of endogenous flavonoids in resistance mechanism of Vigna to aphids. Journal of Agricultural and Food Chemistry 48, 53165320.CrossRefGoogle ScholarPubMed
Liener, I. E. (1981) Factors affecting the nutritional quality of soya products. Journal of American Oil Chemists Society 58, 406415.CrossRefGoogle Scholar
Lima, M. P. L., De-Oliveira, J. V., Barros, R. and Torres, J. B. (2001) Identification of cowpea Vigna unguiculata (L.) Walp. genotypes resistant to Callosobruchus maculatus (Fabr.) (Coleoptera: Bruchidae). Neotropical Entomology 30, 289295.CrossRefGoogle Scholar
Marconi, E., Ruggeri, S. and Carnovale, E. (1997) Chemical evaluation of wild under-exploited Vigna spp. seeds. Food Chemistry 59, 203212.CrossRefGoogle Scholar
Oghiakhe, S., Jackai, L. E. N., Makanjuola, W. A. and Hodgson, C. J. (1992) Morphology, distribution, and the role of trichomes in cowpea (Vigna unguiculata) resistance to the legume pod borer, Maruca testulalis (Lepidoptera: Pyralidae). Bulletin of Entomological Research 82, 499505.CrossRefGoogle Scholar
Olatunde, G. O., Biobaku, I. A., Ojo, D. K., Pitan, O. O. R. and Adegbite, E. A. (2007) Inheritance of resistance in cowpea (Vigna unguiculata) to the pod-sucking bug Clavigralla tomentosicollis (Hemiptera: Coreidae). Tropical Science 47, 128133.CrossRefGoogle Scholar
Olatunde, G. O. and Odebiyi, J. A. (1991) Some aspects of antibiosis in cowpeas resistant to Clavigralla tomentosicollis Stal. (Hemiptera: Coreidae) in Nigeria. International Journal of Pest Management 37, 273276.Google Scholar
Painter, R. H. (ed.) (1951) Insect Resistance in Crop Plants. Macmillan, New York. 520 pp.Google Scholar
Panda, N. and Khush, G. S. (eds) (1995) Host Plant Resistance to Insects. CAB International and International Rice Research Institute, Manila. 431 pp.Google Scholar
Prokopy, R. J. and Owens, E. D. (1983) Visual detection of plants by herbivorous insects. Annual Review of Entomology 28, 337364.CrossRefGoogle Scholar
Reddy, B. V. S., Sharma, H. C. and Stenhouse, J. W. (1995) Breeding for resistance to sorghum midge at ICRISAT Asia centre, pp. 159169. In Panicle Insect Pests of Sorghum and Pearl Millet (edited by Nwanze, K. F. and Youm, O.). ICRISAT, Patancheru.Google Scholar
Rousseaux, M. C., Julkunen-Titto, R., Searles, P. S., Scopel, A. L., Aphalo, P. J. and Ballare, C. L. (2004) Solar UV-B radiation affects leaf quality and leaf herbivory in the southern beech tree Nothofagus antarctica. Oecologia 138, 505512.Google ScholarPubMed
SAS (2001) SAS Version 8 for Windows. SAS Institute, Cary, North Carolina.Google Scholar
Sharma, H. C. and Nwanze, K. F. (1997) Mechanisms of resistance to insects in sorghum and their usefulness in crop improvement. International Crops Research Institute for the Semi-Arid Tropics Information Bulletin No. 45, 2236.Google Scholar
Simmonds, M. S. J. (2003) Flavonoid–insect interactions: recent advances in our knowledge. Phytochemistry 64, 2130.CrossRefGoogle ScholarPubMed
Singh, B. B., Chambliss, O. L. and Sharma, B. (1997) Recent advances in cowpea breeding, pp. 3049. In Advances in Cowpea Research (edited by Singh, B. B., Mohan-Raj, D. R., Dashiell, K. E. and Jackai, L. E. N.). Copublication of International Institute of Tropical Agriculture and Japan International Centre for Agricultural Sciences, Ibadan.Google Scholar
Singh, S. R. and Jackai, L. E. N. (1985) Insect pests of cowpeas in Africa: their life cycle, economic importance and potential for control, pp. 217231. In Cowpea Research, Production and Utilization (edited by Singh, S. R. and Rachie, K. O.). John Wiley and Sons, Chichester, New York.Google Scholar
Singh, S. R. and Van Emden, H. F. (1979) Insect pests of grain legumes. Annual Review of Entomology 24, 255278.CrossRefGoogle Scholar
Suh, J. B., Jackai, L. E. N. and Hammond, W. N. O. (1986) Observations on pod sucking bug populations on cowpea at Mokwa, Nigeria. Tropical Grain Legume Bulletin 33, 1719.Google Scholar
Thorsteinson, A. J. (1960) Host selection in phytophagous insects. Annual Review of Entomology 5, 193218.CrossRefGoogle Scholar
Visser, J. H. (1986) Host odor perception in phytophagous insects. Annual Review of Entomology 31, 121144.CrossRefGoogle Scholar
Wagner, H. and Bladt, S. (eds) (1996) Plant Drug Analysis: A Thin Layer Chromatography. 2nd edn. Springer, Berlin. 328 pp.CrossRefGoogle Scholar
Warren, J. M., Bassman, J. H., Fellman, J. K., Mattinson, D. S. and Eigenbrode, S. (2003) Ultraviolet-B radiation alters phenolic salicylate and flavonoid composition of Populus trichocarpa leaves. Tree Physiology 23, 527535.CrossRefGoogle ScholarPubMed
Yehouenou, A. (1994) Influence de variété de niébé sur la croissance de Clavigralla tomentosicollis Stal. (Hemiptère, Coreidae). Bulletin de la recherche agronomique du Bénin 10, 14.Google Scholar