Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T05:42:26.220Z Has data issue: false hasContentIssue false

Purification and characterization of vitellin from the palo verde beetle, Derobracus geminatus

Published online by Cambridge University Press:  19 September 2011

Ellie O. Osir
Affiliation:
Department of Biochemistry, Biological Sciences West, University of Arizona Tucson, AZ 85721, USA
John H. Law
Affiliation:
Department of Biochemistry, Biological Sciences West, University of Arizona Tucson, AZ 85721, USA
Get access

Abstract

Isolation of vitellin from mature eggs of the palo verde beetle, Derobracus geminatus, was achieved by a combination of gel permeation and anion-exchange chromatography. It is a phosphoglycolipoprotein (Mr ˜250,000) that contains 8% lipids, 4% carbohydrates and 0.2% protein-bound phosphorus. The vitellin is composed of three apoproteins designated I (Mr ˜160,000), II (Mr ˜140,000) and III (Mr ˜50,000). The carbohydrate moiety is composed exclusively of mannose and N-acetylglucosamine. All three apoproteins are glycosylated as shown by flourescein isothiocyanate-conjugated concanavalin A and periodate-Schiff (PAS) staining suggesting the presence of a high mannose structure. Further evidence for the high mannose structure was obtained by the ability of endo-β-N-acetylglucosaminidase H treatment to remove the carbohydrate moieties on the apoproteins.

Résumé

L'isolation du vitellus des oeufs murs du Derobracus geminatus fut realisée grâce à une combination de la filtration à travers un colloïde et à la Chromatographie à echange d' ions. C'est une phospholipoproteine (poids moleculaire 250 000) qui contient 8% de lipides, 4% de glucides et 0.2 % de proteines denommees I (poids moleculaie 160 000), II (poids moleculaire 140 000) et III (poids moleculaire 50 000). La fraction de glucides est composée exclusivement de mannose et N-acetylglucosamine. Toutes les 3 apoproteines étaient glycosidees et demontraient la presence de la mannose comme ça etait demontré grâce à la fluorescence du isothiocyanate conjugué à la concanavalin. A et à la coloration au Periodate de Schiff. Une autre evidence pour demontrer l'existence de la mannose fut obtenue grâce à la l'abilité du endo-β-N-acetylglucosaminidase H de detacher les fractions de glucides des apoproteines.

Type
Research Articles
Copyright
Copyright © ICIPE 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bartlett, G.R. (1959) Phosphorus assay in column chromatography. J. Biol. Chem. 234, 466468.Google Scholar
Bligh, E.G. and Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911917.Google Scholar
Chen, T.T., Strahlendorf, P.W. and Wyatt, G.R. (1978) Vitellin and vitellogenin from locusts (Locusta migratoria). Properties and post-translational modification in the fat body. J. Biol. Chem. 253, 53255331.Google Scholar
Cutting, J.A. and Roth, T.F. (1973) Staining of phosphoproteins on acrylamide gel electropherograms. Analyt. Biochem. 54, 386394.CrossRefGoogle ScholarPubMed
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28, 350356.Google Scholar
Dittmer, J.C. and Wells, M.A. (1969) Quantitative and qualitative analysis of lipids and lipid components. Methods Enzymol. 14, 482530.Google Scholar
Engelmann, F. (1979) Insect vitellogenin: Identification, biosynthesis and role in vitellogenesis. Adv. Insect Physiol. 14, 49108.Google Scholar
Engelmann, F. and Friedel, T. (1974) Insect yolk protein precursor, a juvenile hormone induced phosphoprotein. Life Sciences 14, 587594.CrossRefGoogle ScholarPubMed
Fernando-Wanakulasuriya, G. J. P., Staggers, J.E., Frost, S.C. and Wells, M.A. (1981) Studies on fat digestion, absorption and transport in the suckling rat. I. Fatty acid composition and concentrations of major lipid components. J. Lipid Res. 22, 668674.Google Scholar
Furlan, M., Perret, B.A. and Beck, E.A. (1979) Staining of glycoproteins in polyacrylamide and agarose gels with fluorescent lectins. Analyt. Biochem. 96, 208214.CrossRefGoogle ScholarPubMed
Grimes, W.J. and Greegor, S. (1976) Carbohydrate composition of normal, spontaneously transformed, and virally transformed cells derived from BALB/c mice. Cancer Res. 36, 39053910.Google ScholarPubMed
Haunerland, N.H. and Bowers, W.S. (1986) A larval specific lipoprotein: Purification and characterization of a blue chromoprotein from Heliothis zea. Biochem. Biophys. Res. Commun. 134, 580586.CrossRefGoogle ScholarPubMed
Harnish, D.G. and White, B.N. (1982) Insect vitellins: Identification, purification and characterization from eight orders. J. exp. Zool. 220, 110.Google Scholar
Harnish, D.G., Wyatt, G.R. and White, B.N. (1982) Insect vitellins: Identification of primary products of translation. J. exp. Zool. 220, 1119.Google Scholar
Hagedorn, H.H. and Kunkel, J.G. (1979) Vitellogenin and vitellin in insects. A. Rev. Entomol. 24, 475505.Google Scholar
Imboden, H. and Law, J.H. (1983) Heterogeneity of vitellins and vitellogenins from the tobacco hornworm, Manduca sexta. Time course of vitellogenin appearance in the hemolymph of the adult female. Insect Biochem. 13, 151162.Google Scholar
Jungreis, A.M., Jatlow, P. and Wyatt, G.R. (1973) Composition of hemolymph of the cecropia silkmoth: Changes with diet and ontogeny. J. Insect Physiol. 19, 225233.Google Scholar
Konig, R. and Lanzrein, B. (1985) Binding of vitellogenin to specific receptors in oocyte membrane preparations of the ovoviviparous cockroach Nauphoeta cinerea. Insect Biochem. 15, 735747.CrossRefGoogle Scholar
Kunkel, J.G. and Nordin, J.H. (1985) Yolk proteins. In Comprehensive Insect Physiology, Biochemistry and Physiology (Edited by Kerkut, G.A. and Gilbert, L.I.), Vol. 1, pp. 83111. Pergamon Press, London.Google Scholar
Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 277, 680685.CrossRefGoogle Scholar
Mundall, E.C. and Law, J.H. (1979) Physical and chemical characterization of vitellogenin from hemolymph and eggs of the tobacco hornworm, Manduca sexta. Comp. Biochem. Physiol. 63B, 459468.Google Scholar
Nordin, J.H., Gochoco, C.H., Wojchowski, D.M. and Kunkel, J.G. (1984) A comparative study of the size-heterogeneous high mannose oligosac-charides of some insect vitellins. Comp. Biochem. Physiol. 79 B, 379390.Google Scholar
Oie, M., Takahashi, S.Y., Ishizaki, H. (1975) Vitellogenin of the cockroach Blattella germanica. Purification and characterization. Dev. Growth Diff. 17, 237246.Google Scholar
Osir, E.O., Wells, M.A., and Law, J.H. (1986a) Studies on vitellogenin from the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 3, 217233.Google Scholar
Osir, E.O., Anderson, D.R., Grimes, W.J. and Law, J.H. (1986b) Studies on the carbohydrate moiety of vitellogenin from the tobacco hornworm, Manduca sexta. Insect Biochem. 16, 471478.Google Scholar
Osir, E.O. and Law, J.H. (1986) Studies on uptake of vitellogenin by follicles of the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 3, 513528.CrossRefGoogle Scholar
Pereira, S.D. and De Bianchi, A.G. (1983) Vitellogenin and vitellin of Rhynchosciara americana. Further characterization and time of synthesis. Insect Biochem. 13, 323332.Google Scholar
Ryan, R.O., Schimdt, J.O. and Law, J.H. (1984) Chemical and immunological properties of lipophorins from seven insect orders. Arch. Insect Biochem. Physiol. 1, 375383.Google Scholar
Roth, T.F. and Porter, K.R. (1964) Yolk protein uptake in the ovary of the mosquito, Aedes aegypti. J. Cell Biol. 20, 313332.Google Scholar
Shapiro, J.P. and Law, J.H. (1983) Locust adipokinetic hormone stimulates lipid mobilization in Manduca sexta. Biochem. Biophys. Res. Commun. 115, 924931.Google Scholar
Telfer, W.H., Rubenstein, E. and Pan, M.L. (1981) How the ovary makes yolk. In Regulation of Insect Development and Behaviour (Edited by Sehnal, F., Zabza, A., Menn, J.J., and Cymborowski, B.), pp. 637654. Wroclaw Technical University Press, Wroclaw.Google Scholar
Telfer, W.H., Keim, P.S. and Law, J.H. (1983) Arylphorin, a new protein from Hyalophora cecropia: Comparison with calliphorin and manducin. Insect Biochem. 13, 601613.CrossRefGoogle Scholar