Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T08:23:07.615Z Has data issue: false hasContentIssue false

Population and cytogenetic observations on Anopheles arabiensis Patton of Mwea Irrigation Scheme, Kenya

Published online by Cambridge University Press:  19 September 2011

Titus K. Mukiama
Affiliation:
Department(s) of Botany, University of Nairobi, P.O. Box 30197, Nairobi, Kenya
Richard W. Mwangi
Affiliation:
Department(s) of Zoology, University of Nairobi, P.O. Box 30197, Nairobi, Kenya
Get access

Abstract

A study of the mosquito fauna of the Mwea Rice Irrigation Scheme, Kenya, carried out during 1984 and 1985 identified 13 species, with Anopheles gambiae s. l. comprising 65.71% of the total collection. X-chromosome identification of 652 semi-gravid females resulted in 649 (99.5 %) positive identifications of An. arabiensis, implicating it as the noxious member of the An. gambiae complex present. Inversion polymorphism of chromosomes 2Rb and 3Ra karyotypes was studied in one village population. Seasonal population changes were found to be heavily dependent on rice field surface water. Artificial irrigation for rice farming greatly extended the breeding period per year by linking up the two wet seasons. Adult females fed more frequently on bovids than humans. The mean percentage gonotrophic condition of all females caught in the villagesof Karima, Thiba, Mucii-wa-Urata and Rurumi by pyrethrum spray-sheet collections, miniature light-traps and exit window traps was 69 % bloodfed, 18 % unfed and 13 % gravid. These proportions were statistically shown to be within predictable limits over time and space. The sporozoite infection rate in adult females was 0.55% by manual dissections and 1.2% by the ELISA technique.

Résumé

Une etude de la faune des moustiques de la région irriguées de Mwea au Kenya, effectuée en 1984 et 1985 a identiné 13 espèces avec Anopheles gambiae s. l. composant 65.71 % de la collection totale. Les identification de chromosome X sur 652 demi-gravide femelles donne 649 (99.5%) identifications positives de An. gambie, l'implicant comme membre nocive de An. gambiae complexe presente. Nous avons etudié dans une population villageoise la polymorphisme inversive des karyotypes des chromosomes 2Rb et 3Ra. Les changements saisonieres dans la populations dependant enormement de la surface d'eau du terrain. L'irrigation artificielle de la culture de riz prolonge considerablement la period de croissance annuelle en rapprochant les deux saisons pluvieuses. Les femelles des adultes se nourrissent plus frequenment sur les bovides que sur les humains. La pourcentage moyenne de la condition gonotrophique de toutes les femelles capturées dans les villages de Karima, Thiba, Mucii-wa-Urata et Rurumi en utilisant 3 methodes de capture, c'est a dire, par le pyrethe, par le piège lumière et par le piège de le fenêtre d'exit est de 69 % nourri de sang, 18% non-nourri, et 13% de gravide. Ces proportions statistiquement restent dans les limites de prediction sur l'espèce et le temps. Le taux d'infection de sporozoite chez le femellesdes adultes est de 0.55% par dissection manuelle et de 1.2% par le technique ELISA.

Type
Research Articles
Copyright
Copyright © ICIPE 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beier, J. C., Perkins, P. V., Wirtz, R. A., Whitmire, R. E., Mugambi, M. and Hockmeyer, W. T. (1987) Field evaluation of an enzyme-linked immunosorbent assay (ELISA) for Plasmodium falciparum sporozoite detection in anopheline mosquitoes from Kenya. Am. J. Trop. Med. Parasitol. 36, 459468.CrossRefGoogle ScholarPubMed
Boreham, P. F. L. (1985) Some applications of bloodmeal identifications in relation to the epidemiology of vector-borne tropical diseases. J. Trop. Med. Hyg. 78, 8391.Google Scholar
Brown, A. H. D. (1970) The estimation of Wright's fixation index from genotypie frequencies. Genetica 41, 399406.CrossRefGoogle Scholar
Bryan, J. H., Di Deco, M. A., Petrarca, V. and Coluzzi, M. (1982) Inversion polymorphism and incipient speciation in Anopheles gambiae s. str. in The Gambia, West Africa. Genetica 59, 167176.CrossRefGoogle Scholar
Chandler, J. A. and Highton, R. B. (1975) The succession of mosquito species (Diptera, Culicidae) in rice fields in the Kisumu area of Kenya, and their possible con trol. Bull, entomol. Res. 65, 295302.Google Scholar
Chandler, J. A., Highton, R. B. and Hill, M. N. (1976) Mosquitoes of the Kano Plain, Kenya II. Results of outdoor collections in irrigated and nonirrigated areas using human and animal bait and light-traps. J. Med. Entomol. 13, 202207.CrossRefGoogle ScholarPubMed
Coluzzi, M., Petrarca, V. and Di Deco, M. A. (1985) Chromosomal inversion intergradation and incipient speciation in Anopheles gambiae. Bull. Zool. 52, 4563.CrossRefGoogle Scholar
Coluzzi, M., Sabatini, A., Petrarca, V. and Di Deco, M. A. (1977) Behavioural divergences between mosquitoes with different inversion karyotypes in polymorphic populations of the Anopheles gambiae complex. Nature 266, 832833.CrossRefGoogle ScholarPubMed
Coluzzi, M., Sabatini, A., Petrarca, V. and Di Deco, M. A. (1979) Chromosomal differentiation and adaptations to human environments in the Anopheles gambiae complex. Trans. R. Soc. Trop. Med. Hyg. 73, 483497.CrossRefGoogle ScholarPubMed
Dukeen, M. Y. H. and Orner, S. M. (1986) Ecology of the malaria vector Anopheles arabiensis Patton (Diptera: Culicidae) by the Nile in northern Sudan. Bull, entomol. Res. 76, 451467.Google Scholar
Gillies, M. T. and de Meillon, B. (1968) The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region), 2nd edition. South African Institute of Medical Research publication, No. 54.Google Scholar
Highton, R. B., Bryan, J. H., Boreham, P. F. L. and Chandler, J. A. (1979) Studies on the sibling species Anopheles gambiae Giles and Anopheles arabiensis Patton (Diptera: Culicidae) in the Kisumu area, Kenya. Bull, entomol. Res. 69, 4353.Google Scholar
Joshi, G. P., Service, M. W. and Pradhan, G. D. (1975) A survey of species A and B of the Anopheles gambiae Giles complex in the Kisumu area of Kenya prior to insecticidal spraying with OMS-43 (fenitrothion). Ann. Trop. Med. Parasitol. 69, 91104.CrossRefGoogle Scholar
Mukiama, T. K. (1987) Genetic variation in wild Anopheles arabiensis Patton of Mwea Irrigation Scheme, Kenya. Insect Sci. Applic. 8, 245249.Google Scholar
Mukiama, T. K. and Mwangi, R. W. (1989a) Field studies of larval Anopheles arabiensis Patton of Mwea Irrigation Scheme, Kenya. Insect Sci. Applic. 10, 5562.Google Scholar
Mukiama, T. K. and Mwangi, R. W. (1989b) Seasonal population changes and malaria transmission potential of Anopheles pharoensis and the minor anophelines in Mwea Irrigation Scheme, Kenya. Acta Trop. 46, 181189.CrossRefGoogle ScholarPubMed
Rishikesh, M. A., Di Deco, M. A., Petrarca, V. and Coluzzi, M. (1985) Seasonal variation in indoor resting Anopheles gambiae and Anopheles arabiensis in Kaduna, Nigeria. Acta Trop. 42, 165170.Google ScholarPubMed
Service, M. W. (1970) Ecological notes on species A and B of the Anopheles gambiae complex in the Kisumu area of Kenya. Bull, entomol. Res. 60, 105108.Google Scholar
Service, M. W. (1976) Mosquito Ecology, Field, Sampling Methods. Applied Science Publishers Ltd, London.Google Scholar
Service, M. W., Joshi, G. P. and Pradhan, G. D. (1978) A survey of Anopheles gambiae (species A) and An. arabiensis (species B) of the An. gambiae Giles complex in the Kisumu area of Kenya following insecticidal spraying with OMS-43 (fenitrothion). Ann. Trop. Med. Parasitol. 72, 377386.CrossRefGoogle Scholar
Surtees, G. (1970) Large-scale irrigation and arbovirus epidemiology, Kano Plain, Kenya. J. Med. Entomol. 7, 3542.CrossRefGoogle ScholarPubMed
Surtees, G. (1971) Control of mosquitoes breeding in ricefields. J. Trop. Med. Hyg. 74, 255259.Google ScholarPubMed
Surtees, G., Simpson, D. I. H., Bowen, E. T. W. and Grainger, W. E. (1970) Ricefield development and arbovirus epidemiology, Kano Plain, Kenya. Trans. R. Soc. Trop. Med. Hyg. 64, 511518.CrossRefGoogle ScholarPubMed
White, G. B. (1974a) Anopheles gambiae complex and disease transmission in Africa. Trans. R. Soc. Trop. Med. Hyg. 68, 278301.CrossRefGoogle ScholarPubMed
White, G. B. (1974b) Biological effects of intraspecific chromosomal polymorphism in malaria vector populations. Bull. W.H.O. 45, 169180.Google Scholar
White, G. B., Magayuka, S. A. and Boreham, P. F. L. (1972) Comparative studies on sibling species of the Anopheles gambiae Giles complex (Diptera: Culicidae): Bionomics and vectorial activity of species A and species B at Segera, Tanzania. Buil. entomol. Res. 62, 295317.CrossRefGoogle Scholar