Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T05:51:16.887Z Has data issue: false hasContentIssue false

Plumbagin-induced ultrastructural haemocytic response of Dysdercus koenigii F.

Published online by Cambridge University Press:  19 September 2011

K. Tikku
Affiliation:
Division of Insect Physiology, Regional Research Laboratory, Jarnmu 180 001, India
Bhaskar P. Saxena*
Affiliation:
Division of Insect Physiology, Regional Research Laboratory, Jarnmu 180 001, India
N. K. Satti
Affiliation:
Division of Natural Products Chemistry
K. A. Suri
Affiliation:
Division of Natural Products Chemistry
*
* To whom correspondence should be addressed.
Get access

Abstract

The phytochemical ptumbagin, isolated from Plumbago zeylanica L., was applied in 2 and 5 μl doses of 0.1% concentration on the surface of Dysdercus koenigii F. adults and its effect on the haemocytes of the bug, studied by transmission electron microscopy. All the five haemocyte types viz. the prohaemocyte, plasmatocyte, granular haemocyte, oenocytoid, and the adipohaemocyte are affected within a period of 24–48 hr. The effect begins with an acute state of vacuolization of the cells and a gradual destruction of the organelles, followed by dissolution of the plasma membrane and passing out of the internal organelles, like the mitochondria and the endoplasmic reticulum. This phenomenon is responsible for a consistent elimination of the haemocytes from the blood, leading to lowering of the resistance and mortality of the insects.

Résumé

La substance phytochimique plumbagin, extraite de Plumbago zeylanica L. a été appliquée à des doses de 2 et 5 microlitres dans une concentration de 0.1% sur des adultes de Dysdercus koenigii F.; et ses effets sur les hémocytes de la punaise sont observés au microscope électronique à transmission. Tous les cinq types, hemocytes, prohémocytes, plasmatocytes, granulocytes, oenocytoides et adipohémocytes sont affectés en l'espace de 24–48 heures. L'effet commence par un état de vacuolisation sévère des cellules et une destruction graduelles des organelles suivies par la dissolution de la membrane plasmique et celle des organelles internes telles que les mitochondries et le reticulum endoplasmique. Ce phénomène est responsable de l'hémolyse avec pour résultats l'abaissement de la résistance de l'insecte suivi de sa mort.

Type
Research Articles
Copyright
Copyright © ICIPE 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akai, H. and Sato, S. (1973) infrastructure of the larval hemocytes of the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). Int. J. Insect Morphol. Embryol. 2, 207231.CrossRefGoogle Scholar
Francois, J. (1975) L'encapsulation hémocytaire expérimentale chez le lépisme Thermobia domestica. J. Insect Physiol. 21, 15351546.CrossRefGoogle Scholar
Jones, J. C. (1967) Normal differential counts of haemocytes in relation to ecdysis and feeding in Rhodnius. J. Insect Physiol. 13, 11331141.CrossRefGoogle Scholar
Joshi, N. K. and Sehnal, F. (1989) Inhibition of ecdysteroid production by plumbagin in Dysdercus cingulatus. J. Insect Physiol. 35, 737741.CrossRefGoogle Scholar
Kamionek, M. and Seryczynska, H. (1976) Changes in hemocyte ultrastructure of Galleria mellonellaL. (Lep., Galeriidae) caterpillars due to the effect of fungi and parasitic nematodes. Bull. Acad. pol. Sci. Cl. II Ser. Sci. biol. 24, 483485.Google Scholar
Ratcliffe, N. A. and Rowley, A. F. (1979) Role of hemocytes in defense against biological agents. In Insect Hemocytes, Development, Forms, Functions, and Techniques (Edited by Gupta, A. P.), pp. 331414. Cambridge Univ. Press, Cambridge.CrossRefGoogle Scholar
Sato, S., Akai, H. and Sawada, H. (1976) An ultrastructural study of capsule formation by Bombyx mori. Annot. Zool. Jpn. 49, 177188.Google Scholar
Saxena, B. P. and Tikku, K. (1988) Exploitation of lacunae by some allelochemics in insect-plant interactions. In Dynamics of Insect-plant Interaction. Recent Advances and Future Trends (Edited by Ananthakrishnan, T. N. and Raman, R.), pp. 105122. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.Google Scholar
Saxena, B.P. and Tikku, K. (1990) Effectof plumbagin on haemocytes of Dysdercus koenigii F. Proc. Indian Acad. Sci. (Anim. Sci.) 99, 119124.CrossRefGoogle Scholar
Shapiro, M. (1979) Changes in hemocyte populations. In Insect Hemocytes, Development, Forms, Functions and Techniques (Edited by Gupta, A. P.), pp. 475523. Cambridge Univ. Press, Cambridge.CrossRefGoogle Scholar
Sharma, P.R., Tikku, K. and Saxena, B. P. (1986) An electron microscopic study of normal haemocytes of Poecilocerus pictus (Fab.) and their response to injected yeast cells. Insect Sci. Applic. 7, 8591.Google Scholar
Stoltz, D. B. and Guzo, D. (1986) Apparent haemocy tic transformations associated with parasitoid-induced inhibition of immunity in Malacosoma disstria larvae. J. Insect Physiol. 32, 377388.CrossRefGoogle Scholar