Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T04:11:00.471Z Has data issue: false hasContentIssue false

Plant genetics in pest management

Published online by Cambridge University Press:  19 September 2011

R. S. Pathak
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi, Kenya
Get access

Abstract

The potential of plant genetics in the overall context of integrated pest control could be viewed simply as the potential of plant resistance in pest management. Genetic resistance in plants is one of the most effective and economic means of controlling plant pests. Resistant plants are the first line defence against pests. Successes in breeding for pest resistance depend upon the sound knowledge of the plant genes controlling resistance to pests.

Recent report on the existence of two nonatlelic and independent genes, Rac1 and Rac2 in cowpea cultivars ICV 10 and TVu 310, and ICV 11 and ICV 12, respectively, from the ICIPE has broadened the scope of cowpea breeding against aphid biotypes. Use of biotechnology as a plant breeding tool in transferring resistance genes into agronomically suitable cultivars appears to hold good promise for the future.

Résumé

Le succès de la génétique dessplantes dans son contexte global de la tutte intégrée peut être considérée comme un succès de la réesistance de plantes dans la lutte contre les insectes. La génétique de la résistance de plantes est un des moyens le plus efficace et économique pour la lutte contre les ravageurs des cultures. La résistance de plantes est la première ligne dé défense contre les insectes. Le succés dans la sélèction pour la résistance dépend de la connaissance des gènes qul contrôlent la réesistance contre les insectes.

Les récents travaux sur l'existence de deux gènes non alléliques et de géne indéependents, Rac 1 and Rac 2, dans les variétés de niébe ICV 10 et TVu 310, et ICV 11 et ICV 12, respectivement, à l'ICIPE, ont élargi les moyens pour la sélection de nix èbe contre les biotypes de pucerons. La biotechnologie en tant que outil de sélection en transférant les gènes de résistance dans des variétés agronomiquement acceptables, semble promettre pour l'avenir.

Type
Part I: Symposium on Integrated Pest Management and Environmental Conservation: Pest Management Strategies and Practices
Copyright
Copyright © ICIPE 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailey, J. C. (1982) Influence of plant bug and leafhopper population on glabrous and nectariless cottons. Environ. Entomol. 11, 10111013.CrossRefGoogle Scholar
Beck, C. D. (1965) Resistance of plants to insects. Annu. Rev. Entomol. 3, 267290.Google Scholar
Borlaug, N. E. (1958) The use of multilines or composite varieties to control air-borne epidemic diseases of self-pollinated crop plants. Proc. First Int. Wheat Genet. Symp. The Public Press Ltd. Winnipeg, Canada, pp. 1227.Google Scholar
Chalfant, H. (1985) Entomological research on cowpea pests in the USA. In Cowpea Research, Production and Utilisation (Edited by Singh, S. R. and Rachie, K. O.), pp. 265271. John Wiley and Sons, London.Google Scholar
Christiasen, M. N. and Lewis, C. F.Breeding Plants for Less Favourable Environments. John Wiley & Sons, New York.Google Scholar
Das, Y. T. (1976) Cross resistance to stem borers in rice varieties. J. econ. Entomol. 69, 4146.Google Scholar
Dunn, J. A. (1974) Study on inheritance of resistance to root aphid, Pemphigus bursarius, in lettuce. Ann. Appl. Biol. 76, 918.CrossRefGoogle Scholar
El-Zik, K. M. and Frisbie, R. E. (1985) Integrated crop management systems for pest control and plant protection. In Handbook of Natural Pesticides: Methods. Vol. 1 Theory, Practice, and Detection (Edited by Mandava, N. B.), pp. 21122. CRC Press, Boca Raton.Google Scholar
Flor, H. H. (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathology. 32, 653669.Google Scholar
Flor, H. H. (1947) Inheritance of reaction to rust in flax. J. Agric. Res. 74, 241262.Google Scholar
Flor, H. H. (1956) The complementary genetic system in flax rust. Adv. Genet. 8, 2959.CrossRefGoogle Scholar
Gallum, R. L. (1972) Genetic interrelationships between host plants and insects. J. Environ. Qual. 1, 259265.CrossRefGoogle Scholar
Gallum, R. L. (1977) Genetic basis of hessian-fly epidemics. Ann. N. Y. Acad. Sci. 287, 223229.Google Scholar
Gallum, R. L. (1984) Genetics of host-parasitic interaction in Hessian-fly, Mayetiola destructor (Say) and wheat. In Genetics: Newfrontiers, Proc. XV Int. Congress of Genetics (Edited by Chopra, V. L. et al.), pp. 97104. Oxford & IBH Publishers Co., New Delhi.Google Scholar
Gallum, R. L. and Khush, G. S. (1980) Genetic factors affecting expression and stability of resistance. In Breeding Plants Resistant to Insects (Edited by Maxwell, F. G. and Jennings, P. R.), pp. 6485. John Wiley & Sons, New York.Google Scholar
Gatehouse, A. M. R., Gatehouse, J. A., Dobie, P., Kilminster, A. M. and Boulter, D. (1979) Biochemical basis of insect resistance in Vigna unguiculata. J. Sci. Food Agric. 30, 498.Google Scholar
Green, T. R. and Ryan, C. A. (1972) Wound-induced proteinase inhibitor in plant leaves: A possible defense mechanism against insects. Science 175176.Google ScholarPubMed
Hatchett, J. H. and Gallum, R. L. (1970) Genetics of the ability of the hessian-fly, Mayetiola destructor, to survive on wheats having different genes for resistance. Ann. Entomol. Soc. Am. 60, 14001407.Google Scholar
Harris, M. K. (1980) Biology and Breeding for Resistance to Arthropods and Pathogens of Cultivated Plants (Edited by Harris, M. K.). Texas Agric. Exp. Stn., USA.Google Scholar
Holmes, N. D. and Peterson, L. K. (1957) Effect of continuous rearing of rescue wheat on survival of the wheat stem sawfly, Cephus cinctus Nort. (Hymenoptera: Cephidae). Can. Entomol. 89, 363365.CrossRefGoogle Scholar
International Centre of Insect Physiology and Ecology (1987a) Genetics of plant resistance to insects: Gene effects for sorghum resistance to Chilo partellus. In ICIPE Fifteenth Annual Report, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya.Google Scholar
International Centre of Insect Physiology and Ecology (1987b) Genetics of plant resistance to insects: Gene effects for maize resistance to Chilo partellus. In ICIPE Fifteenth Annual Report, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya.Google Scholar
International Institute of Tropical Agriculture (1981) Research Highlights. IITA, Ibadan, Nigeria.Google Scholar
Jenkins, J. N., Maxwell, F. G., Parratt, W. L. and Buford, W. T. (1969) Resistance to boll weevil (Anthonomus grandis Boh.) oviposition in cotton. Crop Sci. 9, 369372.CrossRefGoogle Scholar
Jennings, P. R. and Pineda, A. T. (1970) Screening rice for resistance to planthopper, Sogatodes orizocola (Muir). Crop Sci. 10, 687689.Google Scholar
Jensen, N. F. (1952) Intra-varietal diversification in oat breeding. Agron. J. 44, 3034.CrossRefGoogle Scholar
Jensen, N. F. (1970) A diallel selective mating system for cereal breeding. Crop Sci. 10, 629635.Google Scholar
Kennedy, G. G. (1976) Host plant resistance and the spread of plant viruses. Environ. Entomol. 5, 827832.CrossRefGoogle Scholar
Khush, G. S. (1977) Breeding for resistance in rice. Ann. N. Y. Acad. Sci. 28, 296308.CrossRefGoogle Scholar
Khush, G. S. (1979) Genetics and breeding for resistance to the brown planthopper. In Brown Planthopper: Threat to Rice Production in Asia. International Rice Research Institute, Los Baños, Laguna, Philippines, pp. 321332.Google Scholar
Leonard, K. J. and Czochor, R. J. (1980) Theory of genetic interactions among populations of plants and their pathogens. Rev. Phytopathol. 18, 237258.CrossRefGoogle Scholar
Lincoln, C., Dean, G., Waddle, B. A., Yearian, W. C., Phillips, J. R. and Roberts, R. (1971) Resistance of Frego-type cotton to boll weevil and boll worm. J. econ. Entomol. 64, 13261327.CrossRefGoogle Scholar
Luginbill, P. Jr (1969) Developing resistant plants the ideal method of controlling insects. US Dep. Agric. ARS Prod. Rep. 111, 14.Google Scholar
Lukefahr, M. J., Noble, L. W. and Houghtaiing, J. E. (1966) Growth and infestation of bollworms and other insects on glanded and glandless strains of cotton. J. econ. Entomol. 59, 817820.Google Scholar
Maxwell, F. G., Jenkins, J. N. and Parrot, W. L. (1972) Resistance of plants to insects. Adv. Agron. 24, 187265.Google Scholar
Maxwell, F.G. and Jennings, P.R. (1980) Breeding Plants Resistant to Insects (Edited by Maxwell, F. G. and Jennings, P. R.). John Wiley & Sons, New York.Google Scholar
National Academy of Sciences (1971) Insect-Plant Interactions Report of Work Conference, NAS, Washington, DC. 1971.Google Scholar
Nielson, M. V., Don, H., Schonhost, M. H., Lehman, W. F. and Marbe, V. L. (1970) Biotypes of the spotted alfalfa aphid in varieties in western United States. J. econ. Entomol. 11, 989996.Google Scholar
Okech, S. H. O. (1986) Colonizing responses of Maruca testulalis (Geyer) (Lepidoptera: Pyralidae) to different cowpea cultivars in relation to their resistance/susceptibility. Ph.D. Thesis of Rivers State. University of Science and Technology, Port Harcourt, Nigeria.Google Scholar
Oliver, B. R., Maxwell, F. G. and Jenkins, J. W. (1970) A comparison of the damage by the bollworm to glanded and glandless cottons. J. econ. Entomol. 63, 13281329.CrossRefGoogle Scholar
Oliver, B. R., Maxwell, F. O., and Jenkins, J. W. (1971) Growth of the bollworm on glanded and glandless cotton. J. econ. Entomol. 64, 396398.CrossRefGoogle Scholar
Painter, R. H. (1951) Insect Resistance in Crop Plants. MacMillan, New York.CrossRefGoogle Scholar
Painter, R. H. (1958) Resistance of plants to insects. Annu. Rev. Entomol. 3, 267290.CrossRefGoogle Scholar
Painter, R. H. (1968) Crops that resist insects provide a way to increase world food supply. Kansas State Agric. Exp. Stn. Bull. 520 pp.Google Scholar
Panda, N. (1979) Principles of Host-plant Resistance to Insect Pests. Hindustan, New Delhi, 386 pp.Google Scholar
Pathak, M. D. (1970) Genetics of plants in pest management. In Concepts of Pest Management (Edited by Rabb, R. L. and Guthrie, F. E. N. C.), pp. 138157. State Univ. Raleigh.Google Scholar
Pathak, M. D. (1975) Utilization of insect-pest interrelationships in pest control. In Insects, Science and Society (Edited by Pimental, D.), pp. 121148. Academic Press, London, New York,Google Scholar
Pathak, R. S. (1983) Induction of aphid resistance in cowpea. Paper presented at the Second FAO/IAEA Research Coordination Meeting on Improvement of Leguminous and Oilseed Crops in Latin America through Induced Mutation. Maracaibo, Venezuela, 7–11, November 1983.Google Scholar
Pathak, R. S. (1985) Genetic variation of stem borer resistance and tolerance in three sorghum crosses. Insect Sci. Applic. 6, 359364.Google Scholar
Pathak, R. S. (1986) Genetics of cowpea resistance to pod borer, Maruca testulalis (Geyer). In New Frontiers in Breeding Researches (Edited by Napompeth, Banpot and Subhadrabandhu, Surant), pp. 741753. Faculty of Agriculture, Kasetsart University, Bangkok, Thailand.Google Scholar
Pathak, R. S. (1988a) Induced mutations for resistance to aphid, Aphis craccivora Koch in cowpea. In Proc. FAO'IAEA Workshop on Improvement of Grain Legume Production using Induced Mutations, Pullman (Wash.) USA. 1–5 July 1986 IAEA, Vienna, pp. 279291.Google Scholar
Pathak, R. S. (1988b) Genetics of resistance to aphid in cowpea. Crop Sci. 28, 474476.Google Scholar
Pathak, R. S. and Olela, J. C. (1983) Genetics of host plant resistance in food crops with special reference to sorghum stem borers. Insect Sci. Applic. 127134.Google Scholar
Pathak, R. S. and Olela, J. C. (1986) Registration of 14 cowpea cultivars. Crop Sci. 26, 647648.Google Scholar
Plucknett, D. L., Smith, N. J. H., William, J. T. and Anishetty, A. M. (1987) Gene Banks and the World's Food. Princeton University Press.Google Scholar
Saxena, R. C. and Barrion, A. A. (1985) Biotypes of the brown planthopper, Nilaparvata lugens (Stal) and strategies in deployment of host plant resistance. Insect Sci. Applic. 6, 271289.Google Scholar
Singh, D. P. (1986) Breeding for resistance to diseases and insect pests. Crop Protection Monographs. Springer-Verlag, Berlin Heidelberg.Google Scholar
Sosa, O. Jr (1978) Biotype L, ninth biotype of the hessian-fly. J. econ. Entomol. 71, 458460.Google Scholar
Sosa, O. Jr (1981) Biotype J and L of the hessian-fly discovered in an Indiana wheat field. J. econ. Entomol. 74, 180181.CrossRefGoogle Scholar
Teetes, G. L. (1985) Insect resistant sorghums in pest management. Insect Sci. Applic. 6, 443451.Google Scholar
Tingey, W. M. (1981) The environment control of insects using plant resistance. In Handbook of Pest Management in Agriculture, Vol. 1. (Edited by Pimentel, D.). CRC Series in Agriculture, CRC Press, Boca Raton, Fla.Google Scholar
Weibel, D. E., Starks, K. J., Wood, E. A. and Morrison, R. D. (1972) Sorghum cultivars and progenies rated for resistance to greenbugs. Crop Sci. 12, 334336.Google Scholar
Wiseman, B. R., MacMillan, W. W. and Widstrom, N. W. (1972) Tolerance as a mechanism of resistance in corn to corn earworm. J. econ. Entomol. 65, 835837.Google Scholar
Witt, S. C. (1985) Brief Book: Biotechnology and Genetic Diversity. California Agricultural Lands Project, 227 Clayton Street, San Francisco, California 94117.Google Scholar
Youle, R. J. and Huang, A. H. C. (1976) Protein bodies from the endosperm of castor bean. Plant Physiol. 58, 703.Google Scholar