Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T08:39:11.344Z Has data issue: false hasContentIssue false

The pathogenicity of Bacillus thuringiensis isolated from the casuarina stem borer, Stromatium fulvum Vill. (Coleoptera: Cerambycidae) for larvae of two species of mosquitoes

Published online by Cambridge University Press:  19 September 2011

Ahlam A. Alfazairy
Affiliation:
Entomology Division, Department of Plant Protection, Faculty of Agriculture, University of Alexandria, Alexandria, Egypt
Get access

Abstract

Bacillus thuringiensis H-14 (Alex), originally isolated from moribund and dead larvae of the casuarina stem borer, Stromatium fulvum, was tested in the laboratory against the second and fourth-instar larvae of both mosquito species, Aedes aegypti and Culex pipiens. The pathogenicity of this bacillus was established when both insects were found to be susceptible to infection over the whole range of test concentrations (0.005–0.35 mg/1). However, A. aegypti showed a higher degree of susceptibility to B. thuringiensis H-14 (Alex) than C. pipiens. A mortality of 100% was achieved within 24 hr with concentrations of 0.09 and 0.25 mg/1 for second- and fourth-instar larvae of A. aegypti, respectively. Also, younger larvae of both test mosquito strains were more susceptible than mature ones.

Résumé

Bacillus thuringiensis H-14 (Alex), original isoleé de larvés morte et de tige de casuarina stem borer, Stromatium fulvum, on a fait une expérience en laboratoire contre les larvés de II et IV stade à deux diffèrents èspeces de moustiques qui sont Aedes aegypti et Culex pipiens. On à prouvé que la stabilité du bacillus contre les maladies que chaque espèces de moustiques étaient sensibles contagé à la maladie dans toutes les concentrations (0.005–0.35 mg/1). On à prouvé que A. aegypti était plus sensible a B. thuringiensis H-14 (Alex) que C. pipiens on a obtenu 100% de taux de mortalité en 24 hr dans les concentrations 0.09 and 0.25 mg/1 a la II et IV stade larvés respectivement pour A. aegypti, mais 0.15 et 0.35 mg/1 et ce qui employé pour C. pipiens à la II et IV stade larvés respectivement. Aussi les petites larvés d'un âge plus petit était plus sensible que les larvés ageés.

Type
Research Articles
Copyright
Copyright © ICIPE 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barjac, H. de (1979) Note on the preparation of a reference formulation IPS-78 for the bioassay of experimental and industrial formulations of Bacillus thuringiensis serotype H-14. WHO/VBC/79.741.Google Scholar
Barjac, H. de and Larget, I. (1979) Proposals for the adoption of a standardized bioassay method for the evaluation of insecticidal formulations derived from serotype H-14 of Bacillus thuringiensis. WHO/VBC/79.744.Google Scholar
Chilcott, C. N., Kalmakoff, J. and Pillai, J. S. (1981) Biological significance of protease activity in Bacillus thuringiensis var. israelensis crystals. WHO/VBC/81.835.Google Scholar
Cooksey, K. E. (1971) The protein crystal toxin of Bacillus thuringiensis: biochemistry and mode of action. In Microbial Control of Insects and Mites (Edited by Burges, H. D. and Hussey, N. W.), pp. 247274. Academic Press, New York.Google Scholar
Galowalia, M. M. S., Gibson, N. H. E. and Wolf, J. (1973) The comparative potencies of the crystalline endotoxin of eight varieties of Bacillus thuringiensis to larvae of Pieris brassicae. J. Invertebr. Path. 21, 301308.CrossRefGoogle Scholar
Hornby, J. A., Hertlein, B. C., Levy, R. and Miller, T. W. (1981) Persistent activity of mosquito larvicidal Bacillus sphaericus 1593 in fresh water and sewage. WHO/VBC/ 81.830.Google Scholar
Jambulingam, P., Kuriakose, K. M., Gunasekaran, K. and Manonmani, A. M. (1984) Field evaluation of Bacillus thuringiensis serotype H-14 formulations. WHO/VBC/ 84.893.Google Scholar
Király, Z., Klement, Z., Solymosy, F. and Vörös, J. (1970) Methods in Plant Pathology—With Special Reference to Breeding for Disease Resistance, p. 509. Akadémiai Kiadó, Budapest.Google Scholar
Litchfield, J. T. and Wilcoxon, F. (1949) A simplified method of evaluating dose-effect experiments. J. Pharmac. exp. Ther. 96, 99113.Google ScholarPubMed
Shaikh, M. U. and Morrison, F. O. (1966) Susceptibility of nine insect species to infection by Bacillus thuringiensis var. thuringiensis. J. Invertebr. Path. 8, 347350.CrossRefGoogle Scholar
Sinègre, G., Gaven, B. and Jullien, J. L. (1979) Essais de titrage de deux poudres primaires expérimentales du serotype H-14 de Bacillus thuringiensis par comparaison avec la formulation de référence IPS.78 en employant des larvés de Culex pipiens et d'Aedes caspius. WHO/VBC/79.745.Google Scholar
Sudomo, M., Aminah, S., Mathis, H. and Bang, Y. H. (1981) Small-scale field trials of Bacillus thuringiensis H-14 against different mosquito vector species in Indonesia. WHO/VBC/81.836.Google Scholar
Thiery, I. L. (1984) Simulation studies on the persistence of Bacillus thuringiensis H-14. WHO/VBC/84.906.Google Scholar
Vankova, J. and Weiser, J. (1978) The pathogenicity of a strain of Bacillus thuringiensis var. Pakistani to mosquito larvae. International Colloquium on Invertebrate Pathology, XIth Annual Meeting of the Society for Invertebrate Pathology, Prague, Czechoslovakia, pp. 219222.Google Scholar