Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T20:54:11.774Z Has data issue: false hasContentIssue false

Les Inhibiteurs des Facteurs Humoraux Chez les Criquets Migrateurs, Schistocerca gregaria et Locusta migratoria: Perspectives d'Utilisation dans la Lutte Biologique

Published online by Cambridge University Press:  19 September 2011

D. Dakouo*
Affiliation:
Institut d'Etudes et de Recherches Agricoles (INERA), Station de Farako-Ba, B.P. 910 Bobo-Dioulasso, Burkina Faso
S. Essuman
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772 Nairobi, Kenya
S.K. Raina
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772 Nairobi, Kenya
M. Bréhélin
Affiliation:
Université de Montpellier II, Laboratoire de Pathologie Comparée, Place E. Bataillon, 34095 Montpellier Cedex 5, France
Latifa Drif
Affiliation:
Université de Montpellier II, Laboratoire de Pathologie Comparée, Place E. Bataillon, 34095 Montpellier Cedex 5, France
*
Corresponding author: DD.
Get access

Abstract

Haemolymph from the locusts Schistocerca gregaria and Locusta migratoria contains humoral factors such as lectin and phenoloxidase system. In vitro studies demonstrated that phenoloxidase system can be activated by LPS, laminarin, Malamoeba locustae cysts, trypsin and methanol. Haemolymph showed agglutination activity for mammalian erythrocytes and protozoa (M. locustae, Leishmania major and Trypanosoma brucei). A purified lectin was isolated from haemolymph by affinity chromatography. Analysis by SDS-PAGE gave a single band at 80 kD while on native PAGE, it gave a single band at 650 kD. Inhibitors of the two humoral factors were investigated. Lectin activity was inhibited by nitrophenyl a α D-galactopyranoside in both cases and by lectin antiserum. Inhibitors of the phenoloxidase system were found in plasma. Prospects for use of such inhibitors are discussed. They could be incorporated in biopesticide formulations in such a way that they could depress locust immune reaction and stimulate biocide activity.

Résumé

L'hémolymphe des criquets migrateurs, Schistocerca gregaria et Locusta migratoria contient des facteurs humoraux, la lectine et le système phénoloxydase. Ces facteurs ont été mis en évidence par des tests in vitro. La lectine présente dans le plasma agglutine les hématies de lapin et les protozoaires Malamoéba locustae, Leishmania major et Tripanosoma brucei. Sa purification et son analyse par électrophorèse en conditions dénaturantes et non dénaturantes ont révélé qu'il s'agit d'une protéine de 650 kD composée de sous-unités de 80 kD. Le système phénoloxydase a été également étudié. Il peut être activé in vitro par des substances d'origine microbienne (LPS, laminarme, suspension de kystes de M. locustae), par la trypsine ou le methanol. Les inhibiteurs de ces deux facteurs humoraux ont été étudiés. Dans le cas de la lectine, il s'agit du sucre inhibiteur, le nitrophényl a αD-galactopyranoside et l'antisérum antilectine. Des inhibiteurs du système phénoloxydase ont été identifiés dans le plasma. Les perspectives d'utilisation de ces inhibiteurs dans la lutte biologique sont discutées. En effet, il serait intéressant d'étudier les possibilités de leur incorporation dans la formulation des biopesticides; ils pourraient ainsi exercer une action dépressive sur le système immunitaire de l'insecte tout en amplifiant l'action des biopesticides.

Type
Research Articles
Copyright
Copyright © ICIPE 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, H. J. and Johnson, E. A. (1977) A simple procedure for the isolation of L-fucose-binding lectins from Ulex europaeus and Lotus tetragonolobus. Carb. Research 58, 253265.CrossRefGoogle ScholarPubMed
Ashida, M. (1990) The prophenoloxidase cascade in insect immunity. Res. Immunol. 141, 908910.Google Scholar
Aspan, A. and Söderhäll, K. (1991) Purification of prophenoloxidase from crayfish blood cells and its activation by an endogenous serine proteinase. Insect Biochem. 21, 363373.CrossRefGoogle Scholar
Beresky, M. A. and Hall, D. W. (1977) The influence of phenylthiourea on encapsulation, melanization and survival in larvae of the mosquito Aedes aegypti parasitized by the nematode Neoplectana carpocapsae. J. Invertebr. Pathol. 29, 7480.CrossRefGoogle Scholar
Boigegrain, R. A., Matras, H., Brehelin, M., Paroutaud, P. and Coletti-Previero, M. A. (1992) Insect immunity: Two proteinase inhibitors from hemolymph of Locusta migratoria. Biochem. Biophys. Res. Comm. 189, 790793.CrossRefGoogle ScholarPubMed
Braun, L., Ewen, A. B. and Gillot, C. (1988) The life cycle and ultrastructure of Malamoeba locustae (King & Taylor) (Amoebidae) in the migratory locust, Melanoplus sanguinipes (F.) (Acrididae). Can. Ent. 120, 759772.CrossRefGoogle Scholar
Bréhélin, M. (1979a) Hemolymph coagulation in L. migratoria: Evidence for a functional equivalent of fibrinogen. Comp. Biochem. Physiol. B, 62, 320334.CrossRefGoogle Scholar
Bréhélin, M. (1979b) Role of hemocytes in hemolymph coagulation in L. migratoria. Experientia 35, 270.Google Scholar
Bréhélin, M. (1991) Depression of immune reactions in insects. Res. Immunol. 141, 935938.Google Scholar
Bréhélin, M., Boigegrain, R. A., Drif, L. and Coletti-Previero, M. A. (1991) Purification of a protease inhibitor which controls prophenoloxidase activation in hemolymph of Locusta migratoria (Inserta). Biochem. Biophys. Res. Comm. 179, 841846.CrossRefGoogle Scholar
Bréhélin, M., Drif, L., Baud, L. and Boemare, N. (1989) Activation of prophenoloxidase in insect haemolymph: Cooperation between humoral and cellular factors in Locusta migratoria. Insect Biochem. 19, 301307.CrossRefGoogle Scholar
Brey, P. T., Lebbun, R. A., Papierok, B., Vennavalli, S. and Hafez, J. (1988) Defense reactions by larvae of Aedes aegypti during infection by the aquatic fungus Lagenidium giganteum (Oomycete). Cell Tiss. Res. 253, 245250.CrossRefGoogle ScholarPubMed
Dakouo, D. (1995) Etude de la défense immunitaire chez les insectes: Cas du criquet pèlerin, Schistocerca gregaria (Forskal) (Orthoptera: Acrididae) vis à vis du protozoaire Malamoeba locustae (King et Taylor) (Protozoa: Amoebidae). Thèse de Docteur d'Etat es Sciences Naturelles, Université d'Abidjan (Côte-d'Ivoire). 150 pp.Google Scholar
Drif, L. and Bréhélin, M. (1989) Agglutinin mediated immune recognition in Locusta migratoria (Inserta). Insect Physiol. 35, 729–136.CrossRefGoogle Scholar
Drif, L. and Bréhélin, M. (1994) Purification and characterization of an agglutinin from the hemolymph of Locustamigratoria (Orthoptera). Insect Biochem. Molec. Biol. 24, 283289.CrossRefGoogle Scholar
Dunbar, B. S. (1990) Two-Dimensional Electrophoresis and Immunological Techniques. Plenum Press, New York, Second Edition. 372 pp.Google Scholar
Goldstein, I. J., Hugue, R. C., Monsigny, M., Osawa, T. and Sharon, N. (1980) What should be called a lectin? Nature 285, 66.CrossRefGoogle Scholar
Götz, P. and Boman, H. G. (1985) Insert immunity, pp. 453–485. In Comprehensive Insect Physiology, Biochemistry and Pharmocology Vol. 3 (Edited by Kerkut, G. A. and Gilbert, L. I.). Pergamon Press, New York.Google Scholar
Hames, B. D. and Rickwood, D. (1990) Gel Electrophoresis of Proteins: A Pratical Approach. Oxford University Press, Oxford, England, Second Edition. 383 pp.Google Scholar
Hapner, K. D. (1983) Hemagglutinin activity in the hemolymph of individual Acrididae grasshoppers specimens, J. Insect Physiol. 29, 101106.CrossRefGoogle Scholar
Ingram, G. A., East, J. and Molyneux, D. H. (1983) Agglutinine of Trypanosoma, Leishmania and Crithidia in insect haemolymph. Deo. Comp. Immunol. 7, 181188.Google Scholar
Ingram, G. A. and Molyneux, D. H. (1990) Lectins (haemagglutinins) in the haemolymph of Glossina fuscipes fuscipes: Isolation, partial characterization, physicochemical properties and carbohydrate binding specificities. Insect Biochem. 20, 1327.CrossRefGoogle Scholar
Komano, H. and Natori, S. (1985) Participation of Sarcophaga peregrina humoral lectin in the lysis of sheep red blood cells injected in the abdomen. Dev. Comp. Immunol. 9, 3140.CrossRefGoogle Scholar
Lackie, A. M. (1988) Immune mechanisms in insects. Parasitology Today 4, 88105.CrossRefGoogle ScholarPubMed
Lackie, A. M. and Vasta, G. R. (1988) The role of galactosyl-binding lectin in the cellular immune response of the cockroach P. americana (Dictyoptera). Immunology 64, 353357.Google ScholarPubMed
Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227, 680685.CrossRefGoogle ScholarPubMed
Leonard, C., Söderhäll, K. and Rowley, A. F. (1985) The role of prophenoloxidase activation in non self recognition and phagocytosis by insect blood cells. J. Insect Physiol. 31, 789792.CrossRefGoogle Scholar
Macintosh, S. C., Kishore, G. M., Perlak, F. J., Marrone, P. G., Stone, T. B., Sims, S. R. and Fuchs, R. L. (1990) Potentiation of Bacillus thuringiensis insecticidal activity by serine protease inhibitors, J. Agric. Food Chem. 36, 11451152.CrossRefGoogle Scholar
Miranpuri, G. S. and Khachatourians, G. G. (1993) Hemocytes surface changes in the migratory grasshopper, Melanoplus sanguinipes in response to wounding and infection with Beauveria bassiana. Entomol. Exp. Appl. 68, 157164.CrossRefGoogle Scholar
Molyneux, D. H. and Ashford, R. W. (1983) The Biology of Trypanosoma and Leishmania, Parasites of Man and Domestic Animals. Taylor and Francis, London. 294 pp.Google Scholar
Natori, S. (1986) The role of lectins in immune reactions in insects, p. 411. In Fundamental and Applied Aspects of Invertebrate Pathology (Edited by Samson, R. A., Vlack, M. and Peters, D.). Proc. 4th Int. Colloq. Invertebr. Pathol., Veldhoven (The Netherlands), August 1986, S.I.P. Wageningen.Google Scholar
Pendland, J. C., Heath, M. A. and Boudas, D. G. (1988) Function of a galactose binding lectin Spodoptera exigua larval haemolymph: Opsonization of blastopores from entomopathogenous hyphomycetes. J. Insect Physiol. 34, 533540.CrossRefGoogle Scholar
Ratcliffe, N. A., Brookman, L. and Rowley, A. (1991) Activation of the prophenoloxidase cascade and initiation of nodule formation in locusts by bacterial lipopolysaccharides. Dev. Comp. Immunol. 15, 3339.CrossRefGoogle ScholarPubMed
Renwrantz, L. (1983) Involvement of agglutinins (lectins) in invertebrate defence reactions: The immuno-biological importance of carbohydrate specific binding molecules. Dev. Comp. Immunol. 7, 603608.CrossRefGoogle Scholar
Renwrantz, L. (1986) Lectins in molluscs and arthropods: Their occurrence, origin and roles in immunity. Symp. Zool. Soc. London 56, 8193.Google Scholar
Saint Leger, R. J., Cooper, R. M. and Charnely, A. K. (1988) The effect of melanization of Manduca sexta cuticule on growth and infection by Metarhizium anisopliae. J. Invertebr. Pathol. 52, 459470.CrossRefGoogle Scholar
Sasaki, T. (1984) Amino acid sequence of a novel Kunitz type chymotrypsine inhibitor from hemolymph of silkworm larvae, Bombyx mori. FEBS Lett. 168, 227230.CrossRefGoogle Scholar
Saul, S. J. and Sugumaran, M. (1986) Protease inhibitor controls prophenoloxidase activation in Manduca sexta. FEBS Lett. 208, 113116.CrossRefGoogle ScholarPubMed
Sharon, N. (1984) Surface carbohydrates and surface lectins are recognition determinants in phagocytosis. Immunol. Today 5, 143147.CrossRefGoogle ScholarPubMed
Smith, P. K., Krohn, R. I., Hermansson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 7685.CrossRefGoogle ScholarPubMed
Söderhäll, K. (1982) Prophenoloxidase activating system and melanisation: A recognition mechanism of arthropods? A review. Dev. Comp. Immunol. 6, 601611.Google ScholarPubMed
Söderhäll, K. and Hall, L. (1984) Lipopolysaccharide induced activation of prophenoloxidase-activating system in crayfish Astacus astacus hemocyte lysate. Biochem. Biophys. Acta 797, 99104.CrossRefGoogle Scholar
Söderhäll, K., Rogener, W., Söderhäll, I., Newton, P. R. and Ratcliffe, N. A. (1988) The properties and purification of a Blaberus craniifer plasma protein which enhances the activation of haemocyte prophenoloxidase by β 1–3 glucan. Insect Biochem. 18, 323330.CrossRefGoogle Scholar
Söderhäll, K. and Smith, V. J. (1986) The prophenoloxidase system: The biochemistry of its activation and role in arthropod cellular immunity with special reference to crustaceans, pp. 208223. In Immunity in Invertebrates (Edited by Brehelin, M.). Springer-Verlag, Berlin.CrossRefGoogle Scholar
Stebbins, M. R. and Hapner, K. D. (1985) Preparation and properties of hemaglutinin from hemolymph of acrididae (grasshoppers). Insect Biochem. 15, 451462.CrossRefGoogle Scholar
Stoltz, D. B. and Guzo, D. (1986) Apparent hemocytic transformation associated with parasitoid induced inhibition of immunity in Malacosoma distria larvae. J. Insect Physiol. 32, 377388.CrossRefGoogle Scholar
Takahashi, H., Komano, H. and Natori, S. (1986) Expression of the lectin gene in Sarcophaga peregrina during normal development and under conditions where the defense mechanism is activated, J. Insect Physiol. 32, 771780.CrossRefGoogle Scholar
Wheeler, M. B., Stuart, G. S. and Hapner, K. D. (1993) Agglutinins mediated opsonization of fungal blastophores in Melanoplus differential. J. Insect Physiol. 39, 477483.CrossRefGoogle Scholar