Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T14:02:33.388Z Has data issue: false hasContentIssue false

Insecticidal Activity of Pyrethroids Against Triatoma infestans

Published online by Cambridge University Press:  19 September 2011

N. Casabé
Affiliation:
Centro de Investigaciones de Plagas e Insecticidas, Cipein (Citefa-Conicet), J. Zufriategui 4380–1603 Villa Martelli Peía, de Buenos Aires, Argentina
F. Melgar
Affiliation:
Centro de Investigaciones de Plagas e Insecticidas, Cipein (Citefa-Conicet), J. Zufriategui 4380–1603 Villa Martelli Peía, de Buenos Aires, Argentina
E. J. Wood
Affiliation:
Centro de Investigaciones de Plagas e Insecticidas, Cipein (Citefa-Conicet), J. Zufriategui 4380–1603 Villa Martelli Peía, de Buenos Aires, Argentina
E. N. Zerba
Affiliation:
Centro de Investigaciones de Plagas e Insecticidas, Cipein (Citefa-Conicet), J. Zufriategui 4380–1603 Villa Martelli Peía, de Buenos Aires, Argentina
Get access

Abstract

The insecticide activity of synthetic pyrethroids to Triatoma infestans was tested by topical application. Deltamethrin, fenpropathrin, bioresmethrin, permethrin, cypermethrin, d-phenothrin and cyphenothrin showed the highest activity.

The susceptibility to poisoning of adult insects by these pyrethroids (except bioresmethrin) was increased by cotreatment with profenofos or with piperonyl butoxide (PBO). Assayed pyrethroids synergized by PBO showed similar general structure.

The vinyl cyano pyrethroids showed a knockdown effect with a delayed recovery. During 15 days after intoxication with deltamethrin, insect recovery was observed. Recovery blockage by PBO was observed in cyphenothrin and deltamethrin poisoning at low doses.

Résumé

L'activité insecticide de pyréthrinoides de synthèse a été essayée par application topique sur Triatoma infestans.

Deltaméthrine, fénpropathrine, biorésméthrine, permethrine, cyperméthrine, d-phénothrine et cyphénothrine ont montrée la meilleure activité.

La susceptibilité à l'intoxication par ces pyréthrinoides des insectes adultes (avec l'exception de biorésmethrine) a été améliorée en ajoutant le profenofos ou le butoxide de pipéronyl (PBO) dans les traitements. Les pyréthrinoides synergisées par PBO ont montrée une structure chimique similaire. Les vinyl cyano piréthrinoides ont montrée l'effect choc accompagné d'une récupération retardée. Pendant 15 jours aprés l'intoxication avec la deltaméthrine, la récupération des insectes a été obtenue.

Type
Research Articles
Copyright
Copyright © ICIPE 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Casabé, N. and Zerba, E. N. (1981) Esterases of Triatoma infestons and its relationship with the metabolism of organophosphorus insecticides. Comp. Biochem. Physiol. 68C, 255258.Google Scholar
Casida, J. E. and Ruzo, L. O. (1980) Metabolic chemistry of pyrethroid insecticides. Pestic. Sci. 11, 257269.CrossRefGoogle Scholar
de Licastro, S. A., Zerba, E. N., Rúveda, M. A., Moutier, E., Picollo, M., Malkenson, D., Wood, E. and Libertella, R. (1978) Insecticide action of 0,0-dialkyl-0-(3-pyridyl)-phosphates and phosphorotionates against Triatoma infestons (Klug). Anales Asoc. Quim. Argentina 66, 6572.Google Scholar
de Licastro, S. A., Zerba, E. N., Wood, E. and De Villar, M. I. P. (1982) The insecticidal and anticholinesterase activities of 0,0-diethyl 0,4-(2,2-disubstituted vinyl) phenyl phosphates and phosphorothioates. Pestic. Sci. 13, 505512.CrossRefGoogle Scholar
de Malkenson, N. C., Wood, E. and Zerba, E. N. (1984) Isolation and characterization of an esterase of Triatoma infestons with a critical role in the degradation of organophosphorus esters. Insect Biochem. 14, 481486.CrossRefGoogle Scholar
Elliott, M. and Janes, N. F. (1978) Synthetic pyrethroids. A new class of insecticide. Chem. Soc. Rev. 7, 473505.CrossRefGoogle Scholar
Elliott, M., Janes, N. F. and Potter, C. (1978) The future of pyrethroids in insect control. A. Rev. Ent. 23, 443469.CrossRefGoogle Scholar
Gualtieri, J. M., Ríos, C. H., Cichero, J. A., Vaez, R. and Carcavallo, R. U. (1984) Ensayo de campo con decametrina en su formulación líquido emulsionable y floable en el control del Triatoma infestons en la provincia de Cérdoba. Chagas 1, 1720.Google Scholar
Hodgson, E. and Tate, L. (1976) Cytochrome P-450 interactions. In Insecticides Biochemistry and Physiology (Edited by Wilkinson, C. F.), pp. 115148, Plenum Press, New York.CrossRefGoogle Scholar
Litchfield, J. T. and Wilcoxon, F. J. (1949) A simplified method of evaluating dose-effect experiments J. Exp. Ther. 96, 99110.Google ScholarPubMed
Metcalf, R. L. (1975) Pest management strategies for the control of insects affecting man and domestic animals. In Introduction to Insect Pest Management (Edited by Metcalf Robert, L. and Luckmann, W. L.), pp. 529564. Wiley, New York.Google Scholar
Miller, T. A. and Adams, M. E. (1982) Mode of action of pyrethroids. In Insecticide Mode of Action (Edited by Coats, J. R.), pp. 327. Academic Press, New York.CrossRefGoogle Scholar
O'Brien, R. D. (1967) Insecticides, Action and Metabolism, pp. 55106. Academic Press, New York.Google Scholar
Oliveira filho, A., Pinchin, R., Figueiredo, M. and Muller, C. A. (1984) Blockage of embryonic development in Panstrongylus megistus by juvenile hormone analogues. Insect Sci. Applic. 5, 127130.Google Scholar
Picollo, M. I., Wood, E. J., Zerba, E. N., de Licastro, S. A. and Rúveda, M. A. (1976) Métodos de laboratorio para medir la toxicidad de insecticidas en Trialoma infestons, Klug. Acta Bioquim. Clin. Latinoam. 10, 6770.Google Scholar
Rabinovich, A. and Barbuto, S. (1973) Control por plaguicidas de enfermedades del hombre transmitidas por artrópodos, in Primera Reunión COPAN-CIPA. Plaguicidas y Residuos de Plaguicidas, Buenos Aires.Google Scholar
Shono, T. and Casida, J. (1978) Species-specificity in enzymatic oxidation of pyrethroid insecticides: 3-phen-oxybenzyl and α-cyano-3-phenoxybenzyl 3-(2,2-dihalo-vinyl)-2,2-dimethyl cyclo-propanecarboxylates. J. Pestic. Sci. 3, 165168.CrossRefGoogle Scholar
Shono, T., Ohsawa, K. and Casida, J. (1979) Metabolism of trans- and cis-permethrin and decamethrin by microsomal enzymes. J. Agric. Food Chem. 27, 316325.CrossRefGoogle ScholarPubMed
Smith, A. (1982) Chemical methods for the control of pests of public health importance. WHO/UBC/Document Series No. 82.841.Google Scholar
Soderlund, D. M., Sanborn, J. R. and Lee, P. W. (1983) Metabolism of pyrethrins and pyrethroids in insects. In Progress in Pesticide Biochemistry and Toxicology (Edited by Hutson, D. H. and Roberts, T. R.), pp. 401435, Wiley, New York.Google Scholar
Wood, E., Zerba, E. N., Picollo, M. I. and De Licastro, S. A. (1979) Partial purification and characterization of Triatoma infestons head acetylcholinesterase. Insect Biochem. 9, 595601.CrossRefGoogle Scholar
Wright, J. W. (1971) The WHO programme for the evaluation and testing of new insecticides. Bull. World Health Org. 44, 11.Google ScholarPubMed