Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T00:19:52.919Z Has data issue: false hasContentIssue false

Infection levels of Coelomomyces indicus Iyengar in larvae of Anopheles gambiae Giles, as related to the copepod fauna in breeding sites at the Kenya Coast

Published online by Cambridge University Press:  19 September 2011

D. M. Sabwa
Affiliation:
International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
W. A. Otieno
Affiliation:
International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
M. O. Odindo
Affiliation:
International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
Get access

Abstract

An ecological study was conducted in two pools, one temporary and one semi-permanent at the Kenya coast to determine the relationship between infection levels of Coelomomyces indicus Iyengar in larvae of Anopheles gambiae Giles, and the species and density of copepods found in these sites. Microcyclops minutus Claus, an intermediate host of Coelomomyces indicus, was the predominant species in both pools. Other species were, Mesocyclops leuckarti Claus, Mesocyclops leuckarti pilosa Kiefer, and Mesocyclops (Thermocyclops) decipiens Kiefer. Infections occurred during the periods when M. minutus densities were above 12 cyclops per 250 ml of water. A positive relationship was shown between M. minutus density and infection levels in An. gambiae with C. indicus. The r-value for this relationship in the temporary pool was 0.726, and in the semi-permanent pool, 0.639.

Résumé

On a dirigé un étude écologique dans deux flaques, l'une temporaire et l'autre quasi-permanent, au côte de Kenya pour que determine le rapport entre les niveaux d'infection par Coelomomyces indicus Iyengar dans les larves de Anopheles gambiae Giles, et les espèces de copepods et leur densité a ces sites. Microcyclops minutus Claus, un hôte intermedaire de C. indicus, était l'espèce predominant dans les deux flaques. D'autres espèces étaient Mesocyclops leuckarti Claus, Mesocyclops leuckarti pilosa Kiefer, et Mesocyclops (Thermocyclops) decipiens Kiefer. Les infections ont existé pendant le temps que les densités de M. minutus était plus que 12 cyclops/250 ml d'eau. On a demonstré un rapport positiv entre le densité de M. minutus et les niveaux d'infection avec C. indicus dans les larves de A. gambiae. Le valeur r pour ce rapport dans le flaque temporaire a été 0.726 et dans le flaque quasi-permanent, le valeur a été 0.639.

Type
Research Articles
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Couch, J. N. (1972) Mass production of Coelomomyces, a fungus that kills mosquitoes. Proceedings of the National Academy of Science. USA 69, 2043–2047.CrossRefGoogle Scholar
Couch, J. N. and Umphlett, C. J. (1963) Coelomomyces infections. In. Steinhaus, E. A. (ed.), Insect pathology, an advanced treatise, Vol. 2, Academic Press, New York, pp. 149188.CrossRefGoogle Scholar
Chapman, H. C. (1974) Biological control of mosquito larvae. A. Rev. Ent. 19, 3359.CrossRefGoogle ScholarPubMed
Chapman, H. C. and Glen, F. E. Jr (1972) Incidence of the fungus Coelomomyces punctatus and C. dodgei in larval populations of the mosquito Anopheles crucians in 2 Louisiana ponds. J. Invertebr. Path. 19, 256261.CrossRefGoogle Scholar
Federici, B. A. (1977) Coelomomyces punctatus: The effect of high intermediate copepod host density on larval mosquito infection rates. Proceedings and Papers of the California Control Association 45, 109.Google Scholar
Federici, B. A. (1980) Production of the mosquito-parasitic fungus Coelomomyces dodgei through syncronized infection and growth of the intermediate copepod host Cyclops vernalis. Entomophaga 25, 209217.CrossRefGoogle Scholar
Federici, B. A. and Chapman, H. C. (1977) Coelomomyces dodgei: Establishment of an in vivo laboratory culture. J. Invertebr. Path. 30, 288297.CrossRefGoogle Scholar
Federici, B. A. and Roberts, D. W. (1976) Experimental laboratory infection of mosquito larvae with fungi of the genus Coelomomyces. II. Experiments with Coelomomyces punctatus in Anopheles quadrimaculatus. J. Invertebr. Path. 27, 333341.CrossRefGoogle ScholarPubMed
Harding, J. F. and Smith, W. A. (1974) A key to the British freshwater cyclopid and calanoid copepods. Freshwater Biological Association. Scientific Publication No. 18, 2541.Google Scholar
Kiefer, F. (1939) Crustacea. IV. Copepoda: Diaptomidae, cyclopidae. Mission Scientifique de L'Omo Tome V. Fascicule 56.Google Scholar
Muspratt, J. (1946) Experimental infection of larvae of Anopheles gambiae (Diptera, Culicidae) with a Coelomomyces fungus. Nature 158, 202.CrossRefGoogle ScholarPubMed
Muspratt, J. (1963) Destruction of the larvae of Anopheles gambiae Giles by a Coelomomyces fungus. WHO Bulletin 29, 8186.Google ScholarPubMed
Otieno, W. A., Odindo, M. O., Sabwa, D. M. (1985) Occurrence of Coelomomyces indicus, a fungal pathogen of malaria mosquito vector, Anopheles gambiae complex along the Kenya coast. Insect Sci. Applic. 6(2), 199204.CrossRefGoogle Scholar
Pennak, R. W. (1978) Freshwater invertebrates of the United States. John Wiley and Sons. Inc. New York, pp. 388420.Google Scholar
Pillai, J. A. (1971) Coelomomyces opifexi (Pillai and Smith) (Coelomomycetaceae: Blastocladiales) I. Its distribution and the ecology of infection in New Zealand. Hydrobiologia 38, 425436.CrossRefGoogle Scholar
Umphlett, C. J. (1969) Infection levels of Coelomomyces pmctatus, an aquatic fungus parasite, in a natural population of the common malaria mosquito, Anopheles quadrimaculatus. J. Invertebr. Path. 15, 299305.CrossRefGoogle Scholar
Walker, A. J. (1938) Fungal infections of mosquitoes, especially Anopheles costalis. Ann. Trop. Med. Parasitol. 32, 231244.CrossRefGoogle Scholar
Whisler, H. C., Zebold, S. L. and Shemanchuk, J. A. (1975) Life history of Coelomomyces psorophorae. Proceedings of the National Academy of Science U.S.A. Vol. 72(2), 693696.CrossRefGoogle ScholarPubMed