Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T12:03:08.286Z Has data issue: false hasContentIssue false

Growth-regulatory activity of silver fern extract on the cotton bollworm, Helicoverpa armigera (Hübner)

Published online by Cambridge University Press:  19 September 2011

A. Josephrajkumar
Affiliation:
Division of Entomology, Indian Agricultural Research Institute New Delhi-110 012, India
B. Subrahmanyam
Affiliation:
Division of Entomology, Indian Agricultural Research Institute New Delhi-110 012, India
C. Devakumar*
Affiliation:
Agricultural Chemicals, Indian Agricultural Research Institute New Delhi-110 012, India
*
*Corresponding author: BS. E-mail: [email protected].
Get access

Abstract

Methanolic extracts of stems and roots of silver fern, Cheilanthes farinosa Kaulf., (Polypodiaceae: Pteridophyta) incorporated into a semi-synthetic diet significantly extended the larval period, reduced pupal weight and adversely affected pupation of the cotton bollworm, Helicoverpa armigera (Hübner) (Noctuidae: Lepidoptera). Early third instars were more susceptible to the treatment than late third instars. A steroidal fraction (Rf 0.7) from the methanolic extract significantly reduced mean larval weight but did not affect pupation. A major ecdysteroidal component (R.t. 9.233 min.) was purified by reverse phase HPLC of this fraction, along with two minor components. The total yield of ecdysteroids was 564 mg/kg of shade-dried root and stem matter. Pooled HPLC fractions, when injected into final instars, resulted in dose-dependent effects on larval-pupal transformation. Adults emerging from treated larvae failed to lay eggs and were shorter-lived than their untreated counterparts.

Type
Research Articles
Copyright
Copyright © ICIPE 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnault, C. and Sláma, K. (1986) Dietary effect of phytoecdysone in the leek moth, Acrolepiopsis assectella Zell. (Lepidoptera: Acrolepiidae). J. Chem. Ecol. 12, 19791986.CrossRefGoogle ScholarPubMed
Arnault, C., Harmatha, J., Mauchamp, B. and Slama, K. (1987) Influence of allelochemical substances on the host plant (Allium porrum) on development and moulting of Acrolepiopsis assectella (Lepidoptera), their role as selective factors, pp. 249255. In Insects-Plants (Edited by Labeyrie, V., Fabres, G. and Lachaise, D.). W. Junk Publishers, Dordrecht.Google Scholar
Bergamasco, R. and Horn, D. H. S. (1983) Distribution and role of insect hormones in plants, pp. 627654. In Endocrinology of Insects (Edited by Downer, R. G. H. and Lauffer, H.). Alan R. Reiss Inc., New York.Google Scholar
Blackford, M. and Dinan, L. (1997) The tomato moth, Lacanobia oleraceae (Lepidoptera: Noctuidae) detoxifies injested 20-hydroxyecdysone, but is susceptible to the ecdysteroid agonists RH-5849 and RH-5992. Insect Biochem. Mol. Biol. 27, 167177.CrossRefGoogle Scholar
Camps, F. (1991) Plant ecdysteroids and their interaction with insects, pp. 331376. In Ecological Chemistry and Biochemistry of Plant Terpenoids (Edited by Harborne, J. B. and Tomas-Barberon, F. A.). Clarendon Press, Oxford.Google Scholar
Dinan, L. (1995) Distribution and levels of phytoecdysteroids within individual plants of species of Chenopodiaceae. European J. Entomol. 92, 295300.Google Scholar
Faux, A., Galbraith, M. N., Horn, D. H. S. and Middleton, E. J. (1970) The structures of two ecdysone analogues, cheilanthone A and B, from the fern, Cheilanthes tennfolia. J. Chem. Soc. Chem. Commun. 243244.CrossRefGoogle Scholar
Gomez, K. A. and Gomez, A. A. (1984) Statistical Procedures for Agricultural Research. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore. 680 pp.Google Scholar
Hikino, H., Okuyama, T., Jin, H. and Takemoto, T. (1973) Screening of Japanese ferns for phytoecdysones— 1. Chem. Pharmacol. Bull. 21, 22922303.CrossRefGoogle Scholar
Horn, D. H. S. and Bergamasco, R. (1985) Chemistry of ecdysteroids, pp. 185245. In Comprehensive Insect Physiology Biochemistry and Pharmacology Vol. 7. (Edited by Kerkut, G. A. and Gilbert, L. I.). Pergamon Press, London.Google Scholar
Jones, C. G. and Firn, R. D. (1978) The role of phytoecdysteroids in bracken fern, Pteridium aquilinum (L.) Kuhn as a defense against phytophagous insect attack. J. Chem. Ecol. 4, 117— 138.CrossRefGoogle Scholar
Kirchner, J. G. (1978) Thin Layer Chromatography. 2nd edition. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore. 1137 pp.Google Scholar
Kubo, I. (1993) Insect control agents from tropical plants, pp. 133151. In Phytochemical Potential of Tropical Plants (Edited by Downum, K. R., Romeo, J. J. and Stafford, H. A.). Plenum Press, New York.CrossRefGoogle Scholar
Kubo, I., Klocke, J. A. and Asano, S. (1983) Effects of ingested phytoecdysteroids on the growth and development of two lepidopterous larvae. J. Insect Physiol. 29, 307316.CrossRefGoogle Scholar
Lafont, R., Pennetier, J. L., Andrianjafintrimo, M., Claret, J., Modde, J. F. and Blais, C. (1982) Simple processing for high performance liquid chromatography of ecdysteroids. J. Chromatogr. 236, 137149.CrossRefGoogle Scholar
Mukherjee, S. N. and Sharma, R. N. (1996) Azadirachtin induced changes in feeding, dietary utilization and midgut carboxylesterase activity of the final instar larvae of Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). J. Environ. Sci. Health B 331, 13071319.CrossRefGoogle Scholar
Nakanishi, K., Korreda, M., Sasaki, S., Chang, M. L. and Hsu, H. Y. (1966) Insect hormones. The structure of ponasterone A, an insect hormone from the leaves of Podocarpus nakaii Hay. J. Chem. Soc. Chem. Commun. 915917.Google Scholar
Richter, K. and Birkenbeil, H. (1987) The effect of extracts of Ajuga reptans on moult regulation in Periplaneta americana. J. Insect Physiol. 33, 933939.CrossRefGoogle Scholar
Robbins, W. E., Kaplanis, J. N., Thompson, M. J., Short, T. J., Cohen, C. F. and Joyner, S. C. (1968) Ecdysones and analogs: Effects on development and reproduction of insects. Science 161, 11581160.CrossRefGoogle ScholarPubMed
Robinson, P. D., Morgan, E. D., Wilson, I. D. and Lafont, R. (1987) The metabolism of ingested and injected [3H]-ecdysone by final instar larvae of Heliothis annigera. Physiol. Entomol. 12, 321330.CrossRefGoogle Scholar
Savolainen, V., Wuest, J., Lafont, R. and Connat, J. L. (1995) Effects of ingested phytoecdysteroids in the female soft tick, Ornithodoras moubata. Expcrientia 51, 596600.CrossRefGoogle ScholarPubMed
Singh, A. K. and Rembold, H. (1992) Maintenance of the cotton bollworm, Heliothis armigera (Hubner) (Lepidoptera: Noctuidae) in laboratory culture. 1. Rearing on semi–synthetic diet. Insect Sci. Applic. 13, 333338.Google Scholar
Singh, P., Russel, G. B. and Fredricksen, S. (1982) The dietary effects of some ecdysteroids on the development of the house fly. Entomol. exp. appl. 32, 712.CrossRefGoogle Scholar
Tanaka, Y. (1995) The different effects of ecdysone and 20–hydroxyecdysone on the induction of larval ecdysis in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). European J. Entomol. 92, 155160.Google Scholar
Tanaka, Y. and Takeda, S. (1993) Ecdysone and 20–hydroxyecdysone supplement to the diet affect larval development in the silkworm, Bombyx mori, differently. J. Insect Physiol. 39, 805809.CrossRefGoogle Scholar
Thompson, J. A. and Horn, D. H. S. (1969) Effect of exogenous moulting hormones on puparium formation of Calliphora. Aust. J. Biol. Sci. 22, 761765.CrossRefGoogle Scholar
Webb, T. J., Powls, R. and Rees, H. H. (1995) Enzymes of ecdysteroid transformation and inactivation in the midgut of the cotton leaf worm Spodoptera littoralis: Properties and developmental profiles. Biochem. J. 312, 561568.CrossRefGoogle Scholar