Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T12:00:35.309Z Has data issue: false hasContentIssue false

Field evaluation of the synergistic effects of neem oil with Beauveria bassiana (Hypocreales: Clavicipitaceae) and Bacillus thuringiensis var. kurstaki (Bacillales: Bacillaceae)

Published online by Cambridge University Press:  02 October 2014

Codjo Euloge Togbé*
Affiliation:
Faculté des Sciences Agronomiques (FSA), Université d'Abomey-Calavi (UAC), 01 BP 526Cotonou, Bénin
Elisabeth Zannou
Affiliation:
Faculté des Sciences Agronomiques (FSA), Université d'Abomey-Calavi (UAC), 01 BP 526Cotonou, Bénin
Gualbert Gbèhounou
Affiliation:
Centre de Recherche Agricole Coton et Fibre (CRA-CF), Institut National des Recherches Agricoles du Bénin (INRAB), 01 BP 791Cotonou, Bénin
Dansou Kossou
Affiliation:
Faculté des Sciences Agronomiques (FSA), Université d'Abomey-Calavi (UAC), 01 BP 526Cotonou, Bénin
Arnold van Huis
Affiliation:
Laboratory of Entomology, Wageningen University (Wageningen UR), PO Box 8031, 6700 EHWageningen, The Netherlands
*
Get access

Abstract

In the present study, the synergistic effects of Beauveria bassiana (Bals.-Criv. Vuill.) (isolate Bb11) and Bacillus thuringiensis var. kurstaki (Berliner) with neem oil were evaluated in three agroecological zones in Bénin. Four bioinsecticide treatments (neem oil, neem oil and B. bassiana used separately for different target pests, neem oil mixed with B. bassiana and neem oil mixed with B. thuringiensis) were compared with a calendar-based treatment using synthetic insecticides and a control without insecticides. The bioinsecticide treatments were less effective than the calendar-based treatment at controlling cotton pests. There was no difference in yields and the number of damaged bolls in plots under treatments with the four bioinsecticide formulations, suggesting an absence of synergy between neem oil and B. bassiana and neem oil and B. thuringiensis. The numbers of natural enemies in all the bioinsecticide treatment plots and the control plots were similar and higher than those in the calendar-based treatment plots. The highest yield and profitability were obtained with the calendar-based treatment. Screening the compatibility of plant-based products and biopesticides through bioassays is essential for a successful application of their combinations in any integrated pest management strategy.

Type
Research Papers
Copyright
Copyright © ICIPE 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, S., Saleem, M. A. and Rauf, I. (2002) Field efficacy of some bioinsecticides against maize and Jowar stem borer, Chilo partellus (Pyralidae: Lepidoptera). International Journal of Agriculture and Biology 4, 332334.Google Scholar
Casida, J. E. and Quistad, G. B. (1998) Golden age of insecticide research: past, present, or future? Annual Review of Entomology 43, 116.Google Scholar
CRA-CF (2002) Rapport de Campagne 2001–2002. Centre de Recherche Agricole Coton et Fibre, MAEP, République du Bénin. 188 pp.Google Scholar
Croft, B. A. and Brown, A. W. A. (1975) Responses of arthropod natural enemies to insecticides. Annual Review of Entomology 20, 285335.Google Scholar
de Faria, M. R. and Wraight, S. P. (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control 43, 237256.Google Scholar
Depieri, R. A., Martinez, S. S. and Menezes, A. O. Jr (2005) Compatibility of the fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycetes) with extracts of neem seeds and leaves and the emulsible oil. Neotropical Entomology 34, 601606.Google Scholar
Douro Kpindou, O. K., Djegui, D. A., Glitho, I. A. and Tamò, M. (2011) Dose transfer of an oil-based formulation of Metarhizium anisopliae (Hypocreales: Clavicipitaceae) sprays to cotton bollworm in an arena trial. International Journal of Tropical Insect Science 31, 262268.CrossRefGoogle Scholar
Elzen, G. W. and James, R. R. (2002) Responses of Plutella xylostella and Coleomegilla maculata to selected insecticides in a residual insecticide bioassay. Southwestern Entomologist 27, 149154.Google Scholar
Gahukar, R. T. (2010) Role and perspective of phytochemicals in pest management in India. Current Science (Bangalore) 98, 897899.Google Scholar
Glin, L. C., Kuiseau, J., Thiam, A., Vodouhé, D. S., Dinham, B. and Ferrigno, S. (2006) Living with Poison – Problems of Endosulfan in West African Cotton Growing Systems. PAN UK, London.Google Scholar
Gouli, V. V., Gouli, S. Y., Skinner, M. and Shternshis, M. V. (2009) Effect of the entomopathogenic fungi on mortality and injury level of western flower thrips, Frankliniella occidentalis . Archives of Phytopathology and Plant Protection 42, 118123.Google Scholar
Haroon, W. M., Pages, C., Vassal, J.-M., Abdalla, A. M., Luong-Skovmand, M.-H. and Lecoq, M. (2011) Laboratory and field investigation of a mixture of Metarhizium acridum and neem seed oil against the tree locust Anacridium melanorhodon melanorhodon (Orthoptera: Acrididae). Biocontrol Science and Technology 21, 353366.Google Scholar
Inglis, G. D., Goettel, M. S., Butt, T. M. and Strasser, H. (2001) Use of hyphomycetous fungi for managing insect pests, pp. 2369. In Fungi as Biocontrol Agents: Progress, Problems and Potential (edited by Butt, T. M., Jackson, C. and Magan, N.). Cabi Publishing, Wallingford, UK.Google Scholar
Islam, Md. T., Castle, S. J. and Ren, S. (2010) Compatibility of the insect pathogenic fungus Beauveria bassiana with neem against sweetpotato whitefly, Bemisia tabaci, on eggplant. Entomologia Experimentalis et Applicata 134, 2834.Google Scholar
Isman, M. B. (2000) Biopesticides based on phytochemicals, pp. 112. In Phytochemical Biopesticides (edited by Koul, O. and Dhaliwal, D. S.). CRC Press, Boca Raton, Florida.Google Scholar
Jena, M. (2005) Integrated pest management with botanical pesticides in rice with emphasis on neem products. Oryza 42, 124128.Google Scholar
Joseph, R. A., Premila, K., Nisha, V. G., Rajendran, S. and Mohan, S. S. (2010) Safety of neem products to tetragnathid spiders in rice ecosystem. Journal of Biopesticides 3, 8889.Google Scholar
Koul, O., Isman, M. B. and Ketkar, C. (1990) Properties and uses of neem, Azadirachta indica . Canadian Journal of Botany 68, 111.Google Scholar
Leskovar, D. I. and Boales, A. K. (1996) Azadirachtin: potential use for controlling lepidopterous insects and increasing marketability of cabbage. HortScience 31, 405409.Google Scholar
Mancini, F., Termorshuizen, A. J., Jiggins, J. L. S. and van Bruggen, A. H. C. (2008) Increasing the environmental and social sustainability of cotton farming through farmer education in Andhra Pradesh, India. Agricultural Systems 96, 1625.Google Scholar
Matthews, G. (1996) The importance of scouting in cotton IPM. Crop Protection 15, 369374.Google Scholar
Mohan, M. C., Reddy, N. P., Devi, U. K., Kongara, R. and Sharma, H. C. (2007) Growth and insect assays of Beauveria bassiana with neem to test their compatibility and synergism. Biocontrol Science and Technology 17, 10591069.Google Scholar
Niassy, S., Maniania, N. K., Subramanian, S., Gitonga, M. L., Maranga, R., Obonyo, A. B. and Ekesi, S. (2012) Compatibility of Metarhizium anisopliae isolate ICIPE 69 with agrochemicals used in French bean production. International Journal of Pest Management 58, 131137.Google Scholar
Patel, M. C. and Vyas, R. N. (2000) Field bioefficacy of Bacillus thuringiensis var kurstaki and neem based formulations against cotton bollworms. Indian Journal of Plant Protection 28, 7883.Google Scholar
Peltzer, R. and Röttger, D. (2013) Cotton Sector Organisation Models and their Impact on Farmer's Productivity and Income. Discussion Paper 4/2013 , Deutsches Institut für Entwicklungspolitik (DIE), Bonn. ISBN: 978-3-88985-627-2.Google Scholar
Pimentel, D. and Edwards, C. A. (1982) Pesticides and ecosystems. BioScience 32, 595600.CrossRefGoogle Scholar
Ravensberg, W. J. (2011) Progress in Biological Control: Roadmap to the Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods. Springer Science, Dordrecht, The Netherlands. 386 pp.Google Scholar
Sakthivel, N., Balakrishna, R., Ravikumar, J., Samuthiravelu, P., Isaiarasu, L. and Qadri, S. M. H. (2012) Efficacy of botanicals against jassid Empoasca flavescens F. (Homoptera: Cicadellidae) on mulberry and their biosafety to natural enemies. Journal of Biopesticides 5, 246249.Google Scholar
Sakthivel, N. and Qadri, S. M. H. (2010) Impact of insecticides and botanicals on population build-up of predatory coccinellids in mulberry. Journal of Biopesticides 3, 8587.Google Scholar
Salako, E. A., Anjorin, S. T., Garba, C. D. and Omolohunnu, E. B. (2008) A review of neem biopesticide utilization and challenges in Central Northern Nigeria. African Journal of Biotechnology 7, 47584764.Google Scholar
SAS Institute (2005) SAS/STAT 9.1 Production GLIMMIX Procedure for Windows. SAS Institute Inc., Cary, NC, USA.Google Scholar
Schmutterer, H. (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica . Annual Review of Entomology 35, 271297.Google Scholar
Schmutterer, H. and Singh, R. P. (2002) List of insect pests susceptible to neem products, pp. 411456. In The Neem Tree Azadirachta indica A. Juss. and Other Meliaceous Plants (edited by Schmutterer, H.), 2nd ed. Neem Foundation, Mumbai, India.Google Scholar
Shah, F. A., Gaffney, M., Ansari, M., Prasad, M. and Butt, T. (2008) Neem seed cake enhances the efficacy of the insect pathogenic fungus, Metarhizium anisopliae, for the control of black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae). Biological Control 44, 111115.CrossRefGoogle Scholar
Sinzogan, A. A. C., Kossou, D. K., Atachi, P. and van Huis, A. (2006) Participatory evaluation of synthetic and botanical pesticide mixtures for cotton bollworm control. International Journal of Tropical Insect Science 26, 246255.Google Scholar
Tavares, W. S., Costa, M. A., Cruz, I., Silveira, R. D., Serrão, J. E. and Zanuncio, J. C. (2010) Selective effects of natural and synthetic insecticides on mortality of Spodoptera frugiperda (Lepidoptera: Noctuidae) and its predator Eriopis connexa (Coleoptera: Coccinellidae). Journal of Environmental Science and Health B 45, 557561.Google Scholar
Togbé, C. E. (2013) Cotton in Bénin: governance and pest management. PhD thesis, Wageningen University, The Netherlands..Google Scholar
Ton, P., Tovignan, S. and Vodouhe, S. D. (2000) Endosulfan deaths and poisonings in Bénin. Pesticides News 47, 1214.Google Scholar
Tovignan, S., Vodouhe, S. and Dinham, B. (2001) Cotton pesticides cause more deaths in Bénin. Pesticides News 52, 1214.Google Scholar
Verghese, A., Nagaraju, D. K., Vasudev, V., Kamala Jayanthi, P. D., Madhura, H. S. and Stonehouse, J. M. (2005) Effectiveness of insecticides of synthetic, plant and animal origin against the mango stone weevil, Sternochetus mangiferae (Fabricius) (Coleoptera: Curculionidae). Crop Protection 24, 633636.Google Scholar
Vimala-Devi, P. S. and Prasad, Y. G. (1996) Compatibility of oils and antifeedants of plant origin with the entomopathogenic fungus Nomuraea rileyi . Journal of Invertebrate Pathology 68, 9193.Google Scholar
Wilson, L. J. (1993) Spider mites (Acari: Tetranychidae) affect yield and fiber quality of cotton. Journal of Economic Entomology 86, 566585.Google Scholar