Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T19:10:59.209Z Has data issue: false hasContentIssue false

Evidence for de novo biosynthesis of osmeterial secretions in young larvae of the swallowtail butterflies (Papilio): deuterium incorporation in vivo into sesquiterpene hydrocarbons as revealed by mass spectrometry

Published online by Cambridge University Press:  19 September 2011

Keiichi Honda
Affiliation:
Seishô Biological Laboratory, 1–3–11 Naka-cho, Odawara 250, Japan
Get access

Abstract

Investigations were carried out on the origin of osmeterial secretions exuded by fourth instar larvae of Papilio helenus and P. protenor that had been reported to secrete a variety of terpenic compounds. Variations in the chemical composition of the secretion induced by dietary and/or genetic factors were quantitative rather than qualitative in both species. Overall pattern of the chemical constituents was found to be highly species-specific and substantially invariable in a given species. Several sesquiterpene hydrocarbons secreted by the larvae were not present in detectable amounts in the leaves of the host plant, Fagara ailantoides, suggesting that the sesquiterpenes were biosynthesized by these larvae. Deuterium was efficiently incorporated in vivo into sesquiterpene hydrocarbons in the secretion, (E)-β−farnesene, β−caryophyllene, germacrene-A and germacrene-B, by topical application of deuteriumlabelled acetic acid to everted osmeteria, while similar treatment with deuterium oxide resulted in much lower incorporation of deuterium. These results provide evidence for de nova biosynthesis of sesquiterpene hydrocarbons in young Papilio larvae.

Type
Research Article
Copyright
Copyright © ICIPE 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blum, M. S. (1981) Chemical Defenses of Arthropods, pp. 388393. Academic Press, New York.Google Scholar
Brand, J. M., Bracke, J. W., Markovetz, A. J., Wood, D. L. and Browne, L. E. (1975) Production of verbenol pheromone by a bacterium isolated from bark beetles. Nature, Lond. 254, 136137.CrossRefGoogle ScholarPubMed
Britton, G., Lockley, W. J. S., Patel, N. J. and Goodwin, T. W. (1977) The use of deuterium from deuterium oxide as a label in studies of biosynthetic pathways. Carotenoid transformations in a Flavobacterium species. FEBS Lett. 79, 281283.CrossRefGoogle Scholar
Byers, J. A., Wood, D. L., Browne, L. E., Fish, R. H., Piatek, B. and Hendry, L. B. (1979) Relationship between a host plant compound, myrcene and pheromone production in the bark beetle, Ips paraconfusus. J. Insect Physiol. 25, 477482.CrossRefGoogle Scholar
Campbell, I. M. (1974) Incorporation and dilution values— their calculation in mass spectrally assayed stable isotope labeling experiments. Bioorg. Chem. 3, 386397.CrossRefGoogle Scholar
Caprioli, R. M. (1972) Use of stable isotopes. In Biochemical Applications of Mass Spectrometry (Ed. by Waller, G. R.), pp. 735776. John Wiley, New York.Google Scholar
Eisner, T., Johnessee, J. S., Carrel, J., Hendry, L. B. and Meinwald, J. (1974) Defensive use by an insect of a plant resin. Science 184, 996999.CrossRefGoogle ScholarPubMed
Eisner, T., Kluge, A. F., Ikeda, M. I., Meinwald, Y. C. and Meinwald, J. (1971) Sesquiterpenes in the osmeterial secretion of a papilionid butterfly, Battus polydamas. J. Insect Physiol. 17, 245250.CrossRefGoogle Scholar
Eisner, T. and Meinwald, Y. C. (1965) Defensive secretion of a caterpillar (Papilio). Science 150, 17331735.CrossRefGoogle ScholarPubMed
Goodfellow, R. D., Huang, Y.-S. and Radtke, H. E. (1972) Isoprenol biosynthesis in the fly, Sarcophaga bullata. Insect Biochem. 2, 467475.CrossRefGoogle Scholar
Happ, G. M. and Meinwald, J. (1965) Biosynthesis of arthropod secretions—I. Monoterpene synthesis in an ant (Acanthomyops ciaviger). J. am. chem. Soc. 87, 25072508.CrossRefGoogle Scholar
Hendry, L. B., Piatek, B., Browne, L. E., Wood, D. L., Byers, J. A., Fish, R. H. and Hicks, R. A. (1980) In vivo conversion of a labelled host plant chemical to pheromones of the bark beetle Ips paraconfusus. Nature, Lond. 284, 485.CrossRefGoogle Scholar
Honda, K. (1980a) Volatile constituents of larval osmeterial secretions in Papilio protenor demetrius. J. Insect Physiol. 26, 3945.CrossRefGoogle Scholar
Honda, K. (1980b) Osmeterial secretions of papilionid larvae in the genera Luehdorfia, Graphium and Atrophaneura (Lepidoptera). Insect Biochem. 10, 583588.CrossRefGoogle Scholar
Honda, K. (1981) Larval osmeterial secretions of the swallowtails (Papilio). J. chem. Ecol. 7, 10891113.CrossRefGoogle ScholarPubMed
Masada, Y. (1975) Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry, pp. 144180. Hirokawa, Tokyo.Google Scholar
Meinwald, J., Happ, G. M., Labows, J. and Eisner, T. (1966) Cyclopentanoid terpene biosynthesis in a phasmid insect and in catmint. Science 151, 7980.CrossRefGoogle Scholar
Peter, M. G., Waggon, W.-D. and Schmid, H. (1977) Identifizierung von farnesol als Zwischenstufe in der biosynthese des cantharidins aus mevalonsäurelacton. Helv. chim. Acta 60, 27562762.CrossRefGoogle Scholar
Prestwich, G. D., Jones, R. W. and Collins, M. S. (1981) Terpene biosynthesis by nasute termite soldiers (Isoptera: Nasutitermitinae). Insect Biochem. 11, 331336.CrossRefGoogle Scholar
Renwick, J. A. A., Hughes, P. R. and Krull, I. S. (1976) Selective production of cis- and trans-verbenol from ( − )-and ( + )-α-pinene by a bark beetle. Science 191, 199201.CrossRefGoogle Scholar
Schlatter, Ch., Waldner, E. E. and Schmid, H. (1968) Zur biosynthese des cantharidins—I. Experientia 24, 994995.CrossRefGoogle Scholar
Schmialek, P. (1963) Über die bildung von juvenilhormonen in wildseidenspinnern. Z. Naturf. 18b, 462465.CrossRefGoogle Scholar
Seligman, I. M. and Doy, F. A. (1973) Biosynthesis of defensive secretions in Papilio aegeus. Insect Biochem. 3, 205215.CrossRefGoogle Scholar
Seyama, Y., Kawaguchi, A., Kasama, T., Sasaki, K., Arai, K., Okuda, S. and Yamakawa, T. (1978) Identification of sources of hydrogen atoms in fatty acids synthesized using deuterated water and stereospecifically deuterium labelled NADPH by gas Chromatographie mass spectro-metric analysis. Biomed. Mass Spectrom. 5, 357361.CrossRefGoogle Scholar
Thompson, A. C. and Mitlin, N. (1979) Biosynthesis of the sex pheromone of the male boll weevil from monoterpene precursors. Insect Biochem. 9, 293294.CrossRefGoogle Scholar
Von Euw, J., Fishelson, L., Parsons, J. A., Reichstein, T. and Rothschild, M. (1967) Cardenolides (heart poisons) in a grasshopper feeding on milkweeds. Nature, Lond. 214, 3539.Google Scholar
Weinheimer, A. J., Youngblood, W. W., Washecheck, P. H., Karns, T. K. B. and Ciereszko, L. S. (1970) Isolation of the elusive ( − )-germacrene-A from the gorgonian, Eunicea mammosa. Chemistry of Coelenterates. XVIII. Tetrahedron. Lett. 1970, 497500.CrossRefGoogle Scholar
Wheeler, J. H., Chung, R. G., Oh, S. K., Benfield, E. F. and Neff, S. E. (1970) Defensive secretions of Cychrine beetles (Coleoptera: Carabidae). Ann. ent. Soc. Am. 63, 469471.CrossRefGoogle Scholar