Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T20:04:04.989Z Has data issue: false hasContentIssue false

Dung burial by roller dung beetles (Coleoptera: Scarabaeinae): An individual and specific-level study

Published online by Cambridge University Press:  28 September 2018

R. L. Carvalho*
Affiliation:
Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG 38408-100, Brazil
F. Frazão
Affiliation:
Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
R.S. Ferreira–Châline
Affiliation:
Departamento de Biologia, Universidade Federal do Espírito Santo, Alegre, ES 29500-000, Brazil
J. Louzada
Affiliation:
Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG 37200-000, Brazil
L. Cordeiro
Affiliation:
Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG 37200-000, Brazil
F. França
Affiliation:
Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, United Kingdom Universidade Federal do Pará, Belém, PA 66705-110, Brazil, Campus Bambuí, Rodovia Bambuí/Medeiros, Km 05, Caixa Postal 05, Bambuí, MG 38900-000, Brazil
*
Get access

Abstract

Dung beetles (Coleoptera: Scarabaeinae) mediate many ecological functions that are important to maintain the ecosystem functioning of terrestrial environments. Although a large amount of literature explores the dung beetle-mediated ecological processes, little is known about the individual contribution from distinct species. Here, we aimed to examine the intra and interspecific variations in dung burial rates performed by two roller dung beetle species (Canthon smaragdulus Fabricius, 1781 and Canthon sulcatus Castelnau, 1840). Furthermore, we evaluated the relationship between dung beetle biomass and dung burial rates. We set up a laboratorial experiment with three treatments (two males, two females, and a couple) and 10 replicates per treatment for each dung beetle species, and dung burial rates were measured after exposing 100 g of mixed pig and human excrement for 48 hours. Our results demonstrate that dung burial rates of males, females, and couples within each species do not differ. However, C. smaragdulus individuals performed a larger dung burial than C. sulcatus individuals did. In addition, we found no effect of individual biomass on the amount of dung burial on intra and interspecific levels. These findings highlight the need for further research considering that distinct species, even from the same genus, may perform different rates of ecological processes, as well as about the importance for considering the beetle biomass when measuring their ecological functions. We call for studies to fill in the knowledge gap about the individual species’ contribution to the maintenance of different dung beetle-mediated ecological processes.

Type
Research Paper
Copyright
Copyright © icipe 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andresen, E. (2002) Dung beetles in a Central Amazonian rainforest and their ecological role as secondary seed dispersers. Ecological Entomolology 27, 257270. doi:10.1046/j.1365-2311.2002.00408.x.Google Scholar
Andresen, E. (2003) Effect of forest fragmentation on dung beetle communities and functional consequences for plant regeneration. Ecography 26, 8797.Google Scholar
Anduaga, S. (2004) Impact of the activity of dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) inhabiting pasture land in Durango, Mexico. Environmental Entomology 33, 13061312.Google Scholar
Antunes, F. Z. (1986) Caracterização climática do Estado de Minas Gerais. Informe Agropecuário 12, 113.Google Scholar
Bang, H. S., Lee, J. H., Kwon, O. S., Na, Y. E., Jang, Y. S. and Kim, W. H. (2005) Effects of paracoprid dung beetles (Coleoptera: Scarabaeidae) on the growth of pasture herbage and on the underlying soil. Applied Soil Ecolology 29, 165171. doi:10.1016/j.apsoil.2004.11.001.Google Scholar
Barlow, J., Lennox, G. D., Ferreira, J., Berenguer, E., Lees, A. C., Mac Nally, R., Thomson, J. R., Ferraz, S. F., Louzada, J., Oliveira, V. H., Parry, L., Solar, R. R., Vieira, I. C., Aragão, L. E., Begotti, R. A., Braga, R. F., Cardoso, T. M., de Oliveira, R.C., Souza, C. M., Moura, N. G., Nunes, S. S., Siqueira, J. V., Pardini, R., Silveira, J. M., Vaz-de-Mello, F. Z., Veiga, R. C. S., Venturieri, A. and Gardner, T. A. (2016) Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144147. doi:10.1038/nature18326.Google Scholar
Barragán, F., Moreno, C. E., Escobar, F., Halffter, G. and Navarrete, D. (2011) Negative impacts of human land use on dung beetle functional diversity. PLoS One 6, e17976. doi:10.1371/journal.pone.0017976.Google Scholar
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. and Courchamp, F. (2012) Impacts of climate change on the future of biodiversity. Ecology Letters 15, 365377.Google Scholar
Belles, X. and Favila, M. E. (1983) Protection chimique du nid chez Canthon cyanellus cyanellus LeConte (Col. Scarabaeidae). Bulletin de la Société Entomologique de France 88, 602607.Google Scholar
Braga, R. F., Korasaki, V., Andresen, E. and Louzada, J. (2013) Dung beetle community and functions along a habitat-disturbance gradient in the Amazon: A rapid assessment of ecological functions associated to biodiversity. PLoS One 8, e57786. doi:10.1371/journal.pone.0057786.Google Scholar
Braga, R. F., Carvalho, R., Andresen, E., Anjos, D. V., Alves-Silva, E. and Louzada, J. (2017) Quantification of four different post-dispersal seed deposition patterns after dung beetle activity. Journal of Tropical Ecology 33, 407410.Google Scholar
Carvalho, R., Ferreira Châline, R. S., Audino, L. D., Louzada, J. and Châline, N. (2018) Do pygidial secretions of dung beetles have the potential to repel urban pest ants? Entomologia Experimentalis et Applicata 166, 517527. doi:10.1111/eea.12706.Google Scholar
Coelho, I. R. and Ribeiro, S. P. (2006) Environment heterogeneity and seasonal effects in ground-dwelling ant (Hymenoptera: Formicidae) assemblages in the Parque Estadual do Rio Doce, MG, Brazil. Neotropical Entomology 35, 1929.Google Scholar
Covich, A. P., Palmer, M. A. and Crowl, T. A. (1999) The role of benthic invertebrate species in freshwater ecosystems: Zoobenthic species influence energy flows and nutrient cycling. Bioscience 49, 119127.Google Scholar
Crawley, M. J. (eds) (2002) Statistical Computing: An Introduction to Data Analysis using S-Plus. John Wiley & Sons, London, United Kingdon. 772 pp.Google Scholar
Crawley, M. J. (eds) (2013) The R Book. Wiley-Blackwell, Chichester, United Kingdom. 1076 pp.Google Scholar
Crutsinger, G. M., Collins, M. D., Fordyce, J. A., Gompert, Z., Nice, C. C. and Sanders, N. J. (2006) Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313, 966968.Google Scholar
de OA Nunes, L. G., Nunes, R. V. and Vaz-de-Mello, F. Z. (2018) Taxonomic revision of the South American subgenus Canthon (Goniocanthon) Pereira & Martínez, 1956 (Coleoptera: Scarabaeidae: Scarabaeinae: Deltochilini). European Journal of Taxonomy, 437, 131.Google Scholar
Emlen, D. J. (1997) Alternative reproductive tactics and male-dimorphism in the horned beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Behavioral Ecology and Sociobiology 41, 335341.Google Scholar
Favila, M. E. (1993) Some ecological factors affecting the life-style of Canthon cyanellus cyanellus (Coleoptera Scarabaeidae): An experimental approach. Ethology, Ecology & Evolution 5, 319328.Google Scholar
Favila, M. E. (2001) Ecología Química en Escarabajos Coprófagos y Necrófagos de la Subfamilia Scarabaeinae, pp. 541580. In Relaciones Químicas entre Organismos: Aspectos Básicos y Perspectivas de su Aplicación (edited by Anaya, A. L. en, Espinosa_García, F. J., and Cruz_Ortega, R.). Instituto de Ecología, UNAM y Plaza y Valdés, S.A. de C.V. México. D. F.Google Scholar
França, F., Barlow, J., Araújo, B. and Louzada, J. (2016a) Does selective logging stress tropical forest invertebrates? Using fat stores to examine sublethal responses in dung beetles. Ecological Evolution 6, 85268533. doi:10.1002/ece3.2488Google Scholar
França, F., Louzada, J., Korasaki, V., Griffiths, H., Silveira, J. M. and Barlow, J. (2016b) Do space-for-time assessments underestimate the impacts of logging on tropical biodiversity? An Amazonian case study using dung beetles. Journal of Applied Ecology 53, 10981105. doi:10.1111/1365-2664.12657Google Scholar
França, F. M., Korasaki, V., Louzada, J. and Vaz-de-Mello, F. Z. (2016c) First report on dung beetles in intra-Amazonian savannahs in Roraima, Brazil. Biota Neotropica 16. doi:10.1590/1676-0611-BN-2015-0034.Google Scholar
França, F., Louzada, J. and Barlow, J. (2018) Selective logging effects on ‘brown world’ faecal-detritus pathway in tropical forests: A case study from Amazonia using dung beetles. Forest Ecology and Management 410, 136143. doi: 10.1016/j.foreco.2017.12.027.Google Scholar
Gregory, N., Gómez, A., Oliveira, T. M. F. de S. and Nichols, E. (2015) Big dung beetles dig deeper: Trait-based consequences for faecal parasite transmission. International Journal for Parasitology 45, 101105. doi:10.1016/j.ijpara.2014.10.006.Google Scholar
Griffiths, H. M., Bardgett, R. D., Louzada, J. and Barlow, J. (2016a) The value of trophic interactions for ecosystem function: Dung beetle communities influence seed burial and seedling recruitment in tropical forests. Proceedings of the Royal Society of London B 283, 20161634. doi:10.1098/rspb.2016.1634.Google Scholar
Griffiths, H. M., Louzada, J., Bardgett, R. D. and Barlow, J. (2016b) Assessing the importance of intraspecific variability in dung beetle functional traits. PLoS One 11, e0145598. doi:10.1371/journal.pone.0145598.Google Scholar
Griffiths, H. M., Louzada, J., Bardgett, R. D., Beiroz, W., França, F., Tregidgo, D. and Barlow, J. (2015) Biodiversity and environmental context predict dung beetle-mediated seed dispersal in a tropical forest field experiment. Ecology 96, 16071619. doi:10.1890/14-1211.1.Google Scholar
Halffter, G. and Edmonds, W. D. (1982) The Nesting Behavior of Dung Beetles (Scarabaeinae): An Ecological and Evolutive Approach. Instituto de Ecologia, Mexico, D. F., 176 pp.Google Scholar
Halffter, G. and Matthews, E. G. (1966) The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae). Folia Entomológica Mexicana 12, 1312.Google Scholar
Hanski, I. and Cambefort, Y. (eds) (1991) Dung Beetle Ecology. Princeton University Press, New Jersey, United States. 514 pp.Google Scholar
Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, A. J., Vandermeer, J. and Wardle, D. A. (2005) Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs 75, 335.Google Scholar
Horgan, F. G. (2001) Burial of bovine dung by coprophagous beetles (Coleoptera: Scarabaeidae) from horse and cow grazing sites in El Salvador. European Journal of Soil Biology 37, 103111.Google Scholar
Kremen, C., Williams, N. M., Aizen, M. A., Gemmill-Herren, B., LeBuhn, G., Minckley, R., Packer, L., Potts, S. G., Roulston, T'ai., Dewenter, I. S., Vázquez, D. P., Winfree, R., Adams, L., Crone, E. E., Greenleaf, S. S., Keitt, T. H., Klein, A. M., Regetz, J. and Ricketts, T. (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters 10, 299314.Google Scholar
Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., Hooper, D. U., Huston, M. A., Rafaelli, D., Schmid, B., Tilman, D. and Wardle, D. A. (2001) Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294, 804808.Google Scholar
Marsh, C. J., Louzada, J., Beiroz, W. and Ewers, R. M. (2013) Optimising bait for pitfall trapping of Amazonian dung beetles (Coleoptera: Scarabaeinae). PLoS One 8 (8), e73147.Google Scholar
Nichols, E. and Gardner, T. A. (2011) Dung beetles as a candidate study taxon in applied biodiversity conservation research, pp. 267291. In Ecology and Evolution of Dung Beetles (edited by Simmons, L. W. and Ridsdill-Smith, T. J.), Wiley-Blackwell Publishing Ltd, Oxford, UK.Google Scholar
Nichols, E., Spector, S., Louzada, J., Larsen, T., Amezquita, S. and Favila, M. E. (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation 141, 14611474. doi:10.1016/j.biocon.2008.04.011.Google Scholar
Nichols, E., Uriarte, M., Bunker, D. E., Favila, M. E., Slade, E. M., Vulinec, K., Larsen, T. H., Vaz-de-Mello, F. Z., Louzada, J. N. C., Naeem, S. and Spector, S. H. (2013a) Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology 94, 180189. doi:10.1890/12-0251.1.Google Scholar
Nichols, E., Uriarte, M., Peres, C. A., Louzada, J., Braga, R. F., Schiffler, G., Endo, W. and Spector, S. H. (2013b) Human-induced trophic cascades along the fecal detritus pathway. PLoS One 8, e75819. doi:10.1371/journal.pone.0075819.Google Scholar
R Core Team (2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Santos-Heredia, C. and Andresen, E. (2014) Upward movement of buried seeds: Another ecological role of dung beetles promoting seedling establishment. Journal of Tropical Ecology 30, 409417. doi:10.1017/S0266467414000376.Google Scholar
Santos-Heredia, C., Andresen, E., del-Val, E. k., Zárate, A., Mendoza, M. N. and Jaramillo, V. J. (2016) The activity of dung beetles increases foliar nutrient concentration in tropical seedlings. Biotropica 48, 565567. doi: 10.1111/btp.12364.Google Scholar
Slade, E. M., Mann, D. J., Villanueva, J. F. and Lewis, O. T. (2007) Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. Journal of Animal Ecology 76, 10941104. doi:10.1111/j.1365-2656.2007.01296.xGoogle Scholar
Slade, E. M., Roslin, T., Santalahti, M. and Bell, T. (2016) Disentangling the ‘brown world’ faecal-detritus interaction web: Dung beetle effects on soil microbial properties. Oikos 125, 629635. doi:10.1111/oik.02640.Google Scholar
Thrush, S. F., Hewitt, J. E., Gibbs, M., Lundquist, C. and Norkko, A. (2006) Functional role of large organisms in intertidal communities: Community effects and ecosystem function. Ecosystems 9, 10291040.Google Scholar
Vaz-de-Mello, F. Z. (2000) Estado Atual de conhecimentos dos Scarabaeidae s. str. (Coleoptera: Scarabaeoidea) do Brasil, pp. 181–195. In El Inventario Y Estimación de La Diversidad Entonológica Em Iberoamérica (edited by Martín-Piera, F., Morrone, J. J. and Melic, A.). Monografias Tercer Milênio, Zaragoza, Spain.Google Scholar
Vaz-de-Mello, F., Larsen, T., Silva, F., Gill, B., Spector, S. and Favila, M. (2014) Canthon smaragdulus. The IUCN Red List of Threatened Species. Available from URL: https://doi.org/10.2305/IUCN.UK.20141.RLTS.T137476A525653.en. [Accessed 3 February 2017].Google Scholar
Ver Hoef, J. M. and Boveng, P. L. (2007) Quasi-poisson vs. negative binomial regression: How should we model overdispersed count data? Ecology 88, 27662772.Google Scholar
Wohlfahrt, G., Bahn, M., Haubner, E., Horak, I., Michaeler, K., Rottmar, L., Tappeiner, U. and Cernusca, A. (1999) Inter-specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. Plant, Cell & Environment 22, 12811296.Google Scholar
Yamada, D., Imura, O., Shi, K. and Shibuya, T. (2007) Effect of tunneler dung beetles on cattle dung decomposition, soil nutrients and herbage growth. Grassland Science 53, 121129. doi:10.1111/j.1744-697X.2007.00082.x.Google Scholar