Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T14:08:34.109Z Has data issue: false hasContentIssue false

Development, reproduction and nutritional ecology of Euproctis latifascia (Lepidoptera: Lymantriidae) on artificial diet and a natural host plant, Camellia sinensis

Published online by Cambridge University Press:  01 September 2006

Bina Pradhan
Affiliation:
Entomology Research Unit, Department of Zoology, University of North Bengal, PO North Bengal University, Darjeeling, 734 013, West Bengal, India
Mayukh Sarker
Affiliation:
Entomology Research Unit, Department of Zoology, University of North Bengal, PO North Bengal University, Darjeeling, 734 013, West Bengal, India
Ananda Mukhopadhyay*
Affiliation:
Entomology Research Unit, Department of Zoology, University of North Bengal, PO North Bengal University, Darjeeling, 734 013, West Bengal, India
*
Get access

Abstract

Euproctis latifascia Walker is an important pest attacking old leaves of tea bushes and mother leaves of nursery cuttings in Darjeeling foothills, Terai and Northeast India. Laboratory experiments were designed to assess the effect of an artificial diet and a natural diet, i.e. tea leaves, Camellia sinensis, on life history traits like development time, survival and fecundity of E. latifascia. In addition, the maintenance cost as well as the nutritional and production indices were estimated for each substrate (diet) using the gravimetric (dry mass) methods. On the natural (tea leaves) and artificial diets, the total development periods were 78.4 and 68.6 days, fecundity 248.8 and 230.3 eggs/female; in the final caterpillar stage (VI), the relative consumption rates were 0.8 and 0.6, relative growth rates 0.05 and 0.07, maintenance costs 5.1 and 2.9 and production index 0.1 and 0.2, respectively. The fifth instar larvae also showed similar differences in their nutritional indices. Based on these parameters it appears that the artificial diet is more suitable for laboratory rearing of E. latifascia than the natural tea-leaf diet.

Résumé

Euproctis latifascia Walker est un ravageur important des vieilles feuilles de théier et des feuilles de boutures dans les pépinières, au pied des collines de Darjeeling, Terai et du nord est de l'Inde. Des études de laboratoire ont été menées afin de tester l'influence d'un milieu artificiel et d'une alimentation naturelle (i.e. des feuilles de thé Camelia sinensis), sur les caractéristiques biologiques telles que la durée de développement, la survie et la fécondité de E. latifascia. De plus, le coût de maintenance ainsi que les indices de nutrition et de production ont été estimés pour chaque substrat (régime) à l'aide des méthodes gravimétriques (poids sec). La durée totale du développement est de 78,4 et 68,6 jours, la fécondité de 248,8 et 230,3 œufs/femelle, chez la larve de dernier stade (VI) le taux de consommation relative est de 0,8 et 0,6, le taux de croissance relatif est de 0,05 et 0,07, le coût de maintenance de 5,1 et 2,9 et l'indice de production de 0,1 et 0,2, respectivement sur régime naturel et artificiel. Le cinquième stade larvaire montre des différences similaires dans les indices de nutrition. Sur la base de ces paramètres, il apparaît que le milieu artificiel est mieux adapté à l'élevage de E. latifascia au laboratoire que le régime à base de feuilles de thé.

Type
Research Article
Copyright
Copyright © ICIPE 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullah, M., Sarnthoy, O. and Chaeychomsri, S. (2000) Comparative study of artificial diet and soybean leaves on growth, development and fecundity of beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Kasetsart Journal (Natural Sciences) 34, 339344.Google Scholar
Anon. (1994) Pests of Tea in North-East India and Their Control. Memorandum 27. Tea Research Association. Tocklai Experimental Station, Jorhat, Assam, India, pp. 43–44.Google Scholar
AOAC (1990) Official Methods of Analysis, 15th edn. Association of Official Analytical Chemists, Virginia.Google Scholar
Appel, H. M. and Martin, M. M. (1992) Significance of metabolic load in the evolution of host specificity of Manduca sexta. Ecology 73, 216228.CrossRefGoogle Scholar
Banerjee, T. C. and Haque, N. (1985) Influence of host plants on development, fecundity and egg hatchability of arctiid moth, Diacrisia casignetum. Entomologia Experimentalis et Applicata 37, 193198.CrossRefGoogle Scholar
Barbosa, P., Cranshaw, W. and Greenblatt, J. (1981) Influence of food quantity and quality on polymorphic dispersal behaviours in the gypsy moth, Lymantria dispar. Canadian Journal of Zoology 59, 293296.CrossRefGoogle Scholar
Cookman, J. E., Angelo, M. J., Slansky, F. Jr. and Nation, J. L. (1984) Lipid content and fatty acid composition of larva and adults of velvet bean caterpillar, Anticarsia gemmatalis, as affected by larval diet. Journal of Insect Physiology 30, 523527.CrossRefGoogle Scholar
Dash, M. C. (1993) Fundamentals of Ecology. Tata McGraw-Hill Publishing Company Limited, New Delhi, India. 373 pp.Google Scholar
David, P. J., Horsburgh, R. L. and Holtzman, L. I. (1989) Development of Platynota flavedana and P. idaeusalis (Lepidoptera: Tortricidae) at constant temperature in the laboratory. Environmental Entomology 18, 1518.CrossRefGoogle Scholar
Deb, D. C., Paul, D. C., Kumar, T. P. and Nair, B. P. (2000) Role of foliar moisture on consumption and conversion efficiency of dry matter of food into cocoon and shell by the fifth instar larvae of Bombyx mori L. Proceedings of the Zoological Society (Calcutta) 53, 3140.Google Scholar
Dikeman, R. N., Lambremont, E. N. and Allen, R. S. (1981) Evidence for selective absorption of polyunsaturated fatty acids during digestion in the tobacco budworm, Heliothis virescens F. Journal of Insect Physiology 27, 3133.CrossRefGoogle Scholar
Embree, D. G. (1965) The population dynamics of the winter moth in Nova Scotia, 1954–1962. Memoirs of the Entomological Society of Canada 46, 157.Google Scholar
Felland, C. M. and Hull, L. A. (1992) Integrated ground cover management. An entomological perspective. Pennsylvania Fruit News 72, 9194.Google Scholar
Gullan, P. J. and Cranston, P. S. (1994) The Insects: An Outline of Entomology. Chapman and Hall, London, UK. 491 pp.Google Scholar
Hunter, A. F. and Lechowicz, M. J. (1992) Foliage quality changes during canopy development of some northern hardwood trees. Oecologia 89, 316323.CrossRefGoogle ScholarPubMed
Krebs, C. J. (1978) Ecology, The Experimental Analysis of Distribution and Abundance. Harper International Edition, London. 678 pp.Google Scholar
Larsson, S. and Tenow, O. (1979) Utilization and dry matter and bioelements in larvae of Neodiprion sertifer Geoffr. (Hym: Dipsionidae) feeding on Scots pine (Pinus sylvertris L.). Oecologia 43, 157172.CrossRefGoogle ScholarPubMed
Lindroth, R. L., Klein, K. A., Hemming, J. D. C. and Feuker, A. M. (1997) Variation in temperature and dietary nitrogen affect performance of the gypsy moth (Lymantria dispar L.). Physiological Entomology 22, 5564.CrossRefGoogle Scholar
Magnoler, A. (1970) A wheat germ diet medium for rearing of the gypsy moth, Lymantria dispar L. Entomophaga 15, 401406.CrossRefGoogle Scholar
Martin, M. M. and Van't Hof, H. M. (1988) The cause of reduced growth of Manduca sexta on low water diet increased metabolic cost of nutrient limitation. Journal of Insect Physiology 34, 515525.CrossRefGoogle Scholar
Mattson, W. J. Jr. (1980) Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11, 119161.CrossRefGoogle Scholar
Morris, R. F. and Miller, C. A. (1954) The development of life tables for the spruce budworm. Canadian Journal of Zoology 32, 283301.CrossRefGoogle Scholar
Moscardi, F., Barfield, C. S. and Allen, G. E. (1981) Consumption and development of velvet bean caterpillar as influenced by soybean phenology. Environmental Entomology 10, 880884.CrossRefGoogle Scholar
Mulky, M. J. (1993) Chemistry and pharmacology of tea, pp. 8396. In Tea Culture, Processing and Marketing (Edited by Mulky, M. J. and Sharma, V. S.). Oxford and IBH Publishing Co., India.Google Scholar
Muthukrishnan, J. and Pandian, T. J. (1987) Insecta, pp. 373–511. In Animal Energetics (Protozoa through Insecta) (Edited by Pandian, T. J. and Vernberg, F. J.). vol. 1. Academic Press, New York, USA.Google Scholar
Panda, N. and Khush, G. S. (1995) Host Plant Resistance to Insects. Biddles Ltd, Guildford. CABI, UK and International Rice Research Institute, Manila, Philippines. 431 pp.Google Scholar
Petrusewicz, K. and Mac Fadyen, A. (1970) Productivity of Terrestrial Animals: Principles and Methods. IBP Handbook No. 13. Blackwell Scientific Publications, Oxford, UK.Google Scholar
Schoonhoven, L. M., Jermy, T. and van Loon, J. J. A. (1998) Insect-Plant Biology: From Physiology to Evolution. Chapman & Hall, London, UK. 409 pp.CrossRefGoogle Scholar
Scriber, J. M. (1977) Limiting effects of low leaf water content on the nitrogen utilization, energy budget and larval growth of Hyalophora cecropia (Lepidoptera: Saturniidae). Oecologia 28, 269287.CrossRefGoogle ScholarPubMed
Slansky, F. Jr. (1992) Allelochemical nutrient interactions in herbivore nutritional ecology, pp. 135174. In Herbivores: Their Interactions with Secondary Plant Metabolites Vol. II, Evolutionary and Ecological Processes (Edited by Rosenthal, G. A. and Barenbaum, M. R.). Academic Press, New York, USA.Google Scholar
Slansky, F. and Scriber, J. M. (1985) Food consumption and utilization, pp. 87163. In Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 4. Regulation: Digestion, Nutrition, Excretion (Edited by Kerkut, G. A. and Gilbert, L. I.). Pergamon Press, Oxford, UK.CrossRefGoogle Scholar
Slansky, F. Jr. and Wheeler, G. S. (1992) Caterpillars compensatory feeding response to diluted nutrients leads to toxic allelochemical dose. Entomologia Experimentalis et Applicata 65, 171186.CrossRefGoogle Scholar
Waldbauer, G. P. (1968) The consumption and utilization of food by insects. Advances in Insect Physiology 5, 229288.CrossRefGoogle Scholar
Waters, D. G. and Barfield, C. S. (1989) Larval development and consumption by Anticarsia gemmatalis (Lepidoptera: Noctuidae) fed various legume species. Environmental Entomology 18, 10061010.CrossRefGoogle Scholar
Wiegert, R. G. and Petersen, C. E. (1983) Energy transfer in insects. Annual Review of Entomology 28, 455486.CrossRefGoogle Scholar