Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T04:05:05.536Z Has data issue: false hasContentIssue false

Chemical ecology and pest management: Some recent insights

Published online by Cambridge University Press:  19 September 2011

J. A. Pickett
Affiliation:
AFRC Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Herts., AL5 2JQ, U.K.
L.J. Wadhams
Affiliation:
AFRC Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Herts., AL5 2JQ, U.K.
C.M. Woodcock
Affiliation:
AFRC Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Herts., AL5 2JQ, U.K.
Get access

Abstract

Selected studies in chemical ecology are described that have led to the identification of semiochemicals playing key roles in pest behaviour. In some instances, these compounds can provide alternatives to insecticides, but novel integrated control programmes including use of semiochemicals are described which have greater potential for the future. Thus, semiochemicals can be used to increase the efficacy of entomophagous fungi and to manipulate populations of beneficial insects. New strategies are being developed which use both antifeedant and attractant semiochemicals to deter insects from crops and aggregate them in areas where they can be destroyed. For the long term, strategies are described that employ genetic manipulation of crop plants so that pests are controlled by semiochemicals produced directly in the plants.

Résumé

Une etude sur l'identification des substances semio chimiques qui jouent un role important sur le comportement des ravageurs fút faite. Dans certains cas ces substances peuvent servir d'alternative aux insecticides. Dans cette publication l'importance d'un nouveau programme de gestion integrée contre les ravageurs base sur les substances semio chimiques a èté decrit De ce fait ces substances peuvent ètre utiliser pour ameliorer l'efficacite des champignons venereux attaquant les insectes et manipuler les populations d'insectes utiles. Des strategies nouvelles basées sur les substances semio chimiques qui attirent ou repulsent les insectes sont entrain d'ètre developper afin de grouper ces insectes pour les detruire. A long terme des strategies qui necessitent les manupilations genetiques des plantes afin de produire des substances semio chimiques capables d'aider dans la lutte contre les ravageurs ont èté decrites.

Type
Reviews: A Ten Year Perspective of Insect Science 1980–1989
Copyright
Copyright © ICIPE 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asakawa, Y., Dawson, G.W., Griffiths, D.C., Lallemand, J-Y., Ley, S.V., Mori, K., Mudd, A., Pezechk-Leclaire, M., Pickett, J.A., Watanabe, H., Woodcock, C.M. and Zhang, Z-N. (1988) Activity of drimane antifeedants and related compounds against aphids, and comparative biological effects and chemical reactivity of (−)− and (+)− polygodial. J. Chem. Ecol. 14, 18451855.CrossRefGoogle ScholarPubMed
Bakke, A. and Strand, L. (1981) Pheromones and traps as part of an integrated control of the spruce bark beetle. Some results from a control program in Norway in 1979 and 1980. Rapport fra norsk institutt for skogforskning 5/81, 139.Google Scholar
Bedard, W.D. and Wood, D.L. (1980) Suppression of Dendroctonus brevicomis by using a mass-trapping tactic. In Management of Insect Pests with Semiochemicals-Concepts and Practice (Edited by Mitchell, E.R.) pp. 103114. Plenum Press.Google Scholar
Belles, X., Camps, F., Coll, J. and Piulachs, M.D. (1985) Insect antifeedant activity of clerodane diterpenoids against larvae of Spodoptera littoralis (Boisd.) (Lepidoptera). J. Chem. Ecol. 11, 14391445.CrossRefGoogle Scholar
Bestmann, H-J., Classen, B., Kobold, U., Vostrowsky, O., Klingauf, F. and Stein, U. (1988) Steam volatile constituents from leaves of Rhus typhina. Photochemistry 27, 8590.CrossRefGoogle Scholar
Bjostad, L.B. and Roelofs, W.L. (1983) Sex pheromone biosynthesis in Trichoplusia ni: Key steps involve delta-11 desaturation and chain-shortening. Science 220, 13871389.CrossRefGoogle ScholarPubMed
Blight, M.M., Pickett, J.A., Smith, M.C. and Wadhams, L.J. (1984) An aggregation pheromone of Sitona lineatus. Naturwissenschaften 71, 480481.CrossRefGoogle Scholar
Blight, M. M., Pickett, J. A., Wadhams, L. J. and Woodcock, C. M. (1989) Antennal responses of Ceutorhynchus assimilis and Psylliodes chrysocephala to volatiles from oilseed rape. Production and protection of oilseed rape and other brassica crops. Asp. App. Biol. 23, 329334.Google Scholar
Borg-Karlson, A-K., Bergstrom, G. and Kullenberg, B. (1987) Chemical basis for the relationship between Ophrys orchids and their pollinators. II. Volatile compounds of O. insectifera and O. speculum as insect mimetic attractants/excitants. Chemica Scripta 27, 303311.Google Scholar
Borg-Karlson, A-K. (1987) Chemical basis for the relationship between Ophrys orchids and their pollinators. III. Volatile compounds of species in the Ophrys sections, Fuciflorae and Bombyliflorae as insect mimetic attractants/excitants. Chemica Scripta 27, 313325.Google Scholar
Briggs, G. G., Cayley, G. R., Dawson, G.W., Griffiths, D.C., Macaulay, E.D.M., Pickett, J.A., Pile, M. M., Wadhams, L.J. and Woodcock, C. M. (1986) Some fluorine-containing pheromone analogues. Pestic. Sci. 17, 441448.CrossRefGoogle Scholar
Broughton, H.B., Ley, S.V., Slawin, A.M.Z., Williams, D.J. and Morgan, E.D. (1986) X-ray crystallographic structure determination of detigloyldihydroazadirachtin and reassignment of the structure of the limonoid insect antifeedant azadirachtin. J. Chem. Soc., Chem. Commun. 4647.Google Scholar
Critchley, B.R., Campion, D.G., McVeigh, L.J., McVeigh, E.M., Cavanagh, G.G., Hosny, M.M., Nasr, E-S.A., Khidr, A.A. and Naguib, M. (1985) Control of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), in Egypt by mating disruption using hollowfibre, laminate-flake and microencapsulated formulations of synthetic pheromone. Bull. Entomol. Res. 75, 329345.CrossRefGoogle Scholar
Dawson, G.W., Griffiths, D.C., Janes, N. F., Mudd, A., Pickett, J. A., Wadhams, L. J. and Woodcock, C. M. (1987a) Identification of an aphid sex pheromone. Nature 325, 614616.CrossRefGoogle Scholar
Dawson, G.W., Griffiths, D.C., Pickett, J.A., Wadhams, L.J. and Woodcock, C.M. (1987b) Plant-derived synergists of alarm pheromone from turnip aphid, Lipaphis (Hyadaphis) erysimi (Homoptera, Aphididae). J. Chem. Ecol. 13, 16631671.CrossRefGoogle ScholarPubMed
Dawson, G.W., Griffiths, D.C., Merritt, L.A., Mudd, A., Pickett, J.A., Wadhams, L.J. and Woodcock, C.M. (1988a) The sex pheromone of the greenbug, Schizaphis graminum. Entomol. exp. Appl. 48, 9193.CrossRefGoogle Scholar
Dawson, G.W., Griffiths, D.C., Pickett, J.A., Plumb, R.T., Woodcock, C.M. and Zhang, Z-N. (1988b) Structure/activity studies on aphid alarm pheromone derivatives and their field use against transmission of barley yellow dwarf virus. Pestic. Sci. 22, 1730.CrossRefGoogle Scholar
Dawson, G.W., Janes, N.F., Mudd, A., Pickett, J.A., Slawin, A.M.Z., Wadhams, L.J. and Williams, D.J. (1988c) The aphid sex pheromone. Pure and Appl. Chem. 61, 555558.CrossRefGoogle Scholar
Dawson, G.W., Laurence, B.R., Pickett, J.A., Pile, M.M. and Wadhams, L.J. (1989) A note on the mosquito oviposition pheromone. Pestic. Sci. 27, 277280.CrossRefGoogle Scholar
Dobson, H.E.M., Bergström, J., Bergström, G. and Groth, I. (1987) Pollen and flower volatiles in two Rosa species. Phytochemistry 26, 31713173.CrossRefGoogle Scholar
Frazier, J.L. (1986) The perception of plant allelochemicals that inhibit feeding. In Molecular Aspects of Insect-Plant Associations (Edited by Brattsten, L.B. and Ahmad, S.), pp. 142. Plenum Publishing Corporation.Google Scholar
Free, J.B., Pickett, J.A., Ferguson, A.W., Simpkins, J.R. and Smith, M.C. (1985) Repelling foraging honeybees with alarm pheromones. J. Agric. Sci., Cambridge 105, 255260.CrossRefGoogle Scholar
Gibson, R.W. and Pickett, J.A. (1983) Wild potato repels aphids by release of aphid alarm pheromone. Nature 302, 608609.CrossRefGoogle Scholar
Gijzen, M., Mcgregor, I. and Seguin-Swartz, G. (1989) Glucosinolate uptake by developing rapeseed embryos. Plant Physiol. 89, 260263.CrossRefGoogle ScholarPubMed
Griffiths, D.C. and Pickett, J.A. (1987) Novel chemicals and their formulation for aphid control. Proceedings of the 14th International Symposium on Controlled Release of Bioactive Materials, Toronto, 1987 (Edited by Lee, P.I. and Leonhardt, B.A.), pp. 243244. Toronto: The Controlled Release Society, Inc.Google Scholar
Griffiths, D.C., Hassanali, A., Merritt, L.A., Mudd, A., Pickett, J.A., Shah, S.J., Smart, L.E., Wadhams, L.J. and Woodcock, C.M. (1988) Highly active antifeedants against coleopteran pests. Proceedings Brighton Crop Protection Conference-Pests and Diseases 1988, 10411046.Google Scholar
Griffiths, D.C., Merritt, L.A., Mudd, A., Pickett, J.A., Pye, B.J. and Smart, L.E. (1989) Laboratory evaluation of pest management strategies that combine antifeedants with novel crop protection agents. (In press).Google Scholar
Hildyr, V.A., Gatehouse, A.M.R., Sheerman, S.E., Barker, R.F. and Boulter, D. (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330, 160163.CrossRefGoogle Scholar
Kami, T. (1975) Identification of components in the essential oil of hybridsorgo, a forage sorghum. J. Agric. Food Chem. 23, 795798.CrossRefGoogle Scholar
Kraus, W., Bokel, M., Klenk, A. and Pöhnl, H. (1985) The structure of azadirachtin and 22, 23-dihydro-23β-methoxyazadirachtin. Tetrahedron Lett. 26, 6435.CrossRefGoogle Scholar
Liu, X., Kong, J., Zhang, Z-N., Pickett, J.A., Pan, Y-C. and Meng, X-Y. (1987) Field attraction of the photosensitive propheromone to the diamondback moth, Plutella xylostella (L.). Sinozoologia 5, 1519.Google Scholar
Liu, X., Macaulay, E.D.M. and Pickett, J.A. (1984) Propheromones that release pheromona carbonyl compounds in light. J. Chem. Ecol. 1 809822.CrossRefGoogle Scholar
Macaulay, E.D.M., Etheridge, P., Garthwaite, D.G., Greenway, A.R., Wall, C. and Goodchild, R.E. (1985) Prediction of optimum spraying dates against pea moth, Cydia nigricana (F.) using pheromone traps and temperature measurements. Crop Protection 4, 8598.CrossRefGoogle Scholar
Otieno, W.A., Onyango, T.O., Pile, M.M., Laurence, B.R., Dawson, G.W., Wadhams, L.J. and Pickei, J.A. (1988) A field trial of the synthetic mosquito oviposition pheromone with Culex. quinquefasciatus Say (Diptera: Culicidae) i: Kenya. Bull. Entomol. Res. 78, 463478.CrossRefGoogle Scholar
Osborn, T.C., Alexander, D.C., Sun, S.M.S., Cardon, C. and Bliss, F.A. (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science 240, 207210.CrossRefGoogle Scholar
Pickett, J.A., Dawson, G.W., Griffiths, D.C., Liu, X., Macaulay, E.D.M. and Woodcock, C.M. (1984) Propheromones: An approach to the slow releas of pheromones. Pestic. Sci. 15, 261264.Google Scholar
Pickett, J.A., Dawson, G.W., Griffiths, D.C., Hassanali, A., Merritt, L.A., Mudd, A., Smith, M.C., Wadhams, L.J., Woodcock, C.M. and Zhang, Z-N. (1987) Development of plant-derive antifeedants for crop protection. In Pesticide Science and Biotechnology (Edited by Greenhalgh, R. and Roberts, T. R.) pp. 125128Google Scholar
Pickett, J. A. (1988) Integrating use of beneficial organisms with chemical crop protection. Phil Trans. R. Soc. Lond. B 318, 203211.Google Scholar
Rawlinson, C.J., Muthyalu, G., Poole, V., Cayley, G. R., Hulme, P.J. and Pickett, J.A. (1984) Rothamsted Report for 1984, Part I, 124125.Google Scholar
Silverstein, R. M. (1981) Pheromones: Background and potential for use in insect pest control. Science 213, 13261332.CrossRefGoogle ScholarPubMed
Vaeck, M., Reynaerts, A., Höfte, H., Jansens, S., Beuckeleer, M. De., Dean, C., Zabeau, M., Montagu, M. Van and Leemans, J. (1987) Transgenic plants protected from insect attack. Nature 328, 3337.CrossRefGoogle Scholar
Yamasaki, R.B. and Klocke, J.A. (1987) Structure bioactivity relationships of azadirachtin, a potential insect control agent. J. Agric. Food Chem. 35, 467471.CrossRefGoogle Scholar