Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T17:35:56.926Z Has data issue: false hasContentIssue false

Characterization of trypanosome isolates from cattle in Uganda using species-specific DNA probes reveals predominance of mixed infections

Published online by Cambridge University Press:  19 September 2011

J. H. P. Nyeko
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P. O. Box 30709, Nairobi, Kenya
O. K. Ole-Moiyoi
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P. O. Box 30709, Nairobi, Kenya
P. A. O. Majiwa
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P. O. Box 30709, Nairobi, Kenya
L. H. Otieno
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi, Kenya
P. M. Ociba
Affiliation:
Veterinary Department, P. O. Box 7141, Kampala, Uganda
Get access

Abstract

The application of nucleic acid hybridization techniques in the identification of most protozoan parasites, using species-specific DNA probes, has recently been described by several investigators. Species-specific DNA probes have been employed in the characterization of trypanosome infections in cattle and tsetse from Uganda. Most infections revealed by our DNA probes were mixed. Using these probes, a mixed infection with Trypanosoma brucei, T. vivax and both savannah and Kilifi types of T. congolense was revealed in one cow. This mixed infection could not have been detected by any of the classical parasitological methods. Isolates made from natural field infections, which had been passaged in laboratory animals, were found to consist of homogeneous trypanosome species. This was demonstrated in all of 47 stabilates which were homogeneous infections either of savannah type T. congolense or T. brucei.

The method of sample preparation for DNA probe analysis was modified to suit field conditions. The samples, which were spot-blotted onto nylon filters and either immediately denatured or left undenatured, could be kept at room temperature for 1 month with only a moderate loss of hybridization signal intensities. Although hybridization signals were visible in undenatured samples, those seen with the samples that had been denatured were clearly more intense. This approach eliminates the need for liquid nitrogen and/or an incubator in the field. The simplicity, sensitivity and specificity of this diagnostic technique using species-specific DNA probes, make it an important tool for future studies of the epidemiology of African trypanosomiases.

Résumé

L'emploi de techniques d'hybridation des acides nucléiques pour identifier la plupart des parasites protozoaires a été récemment décrit par plusieurs groupes. Des sondes ADN spécifiques de l'espèce ont été utilisées pour caractériser des infections dues aux trypanosomes chez les bovins et les mouches tsé-tsé en provenance de l'Ouganda. La plupart des infections étaient mixtes: par exemple, chez une vache, une infection mixte par Trypanosome brucei, T. vivax ainsi que par T. congolense du type Kilifi et des savannes. Cette infection mixte n'aurait pas pu être détectée par les méthodes classiques de parasitologie. 47 isolats obtenus d'infections dans la nature et passés dans des animaux de laboratoire ont tous contenu des espèce homogènes, de type savanne T. brucei ou T. congolense.

La préparation d'échantillons était modifiée pour tenir compte des conditions sur le terrain. Les échantillons, spottés sur des filtres nylon en double, dont un soumis à dénaturation, pouvaient être maintenus à temperature ambiente pendant 1 mois avec seulement une perte modérée d'intensité du signal. Les signaux obtenus avec les échantillons dénaturés étaient plus intense que ceux obtenus avec les échantillons non-dénaturés. Cette approche supprime le besoin de recourir à l'azote liquide et/ou d'un incubateur sur le terrain. La simplicité, la sensibilité et la spécificité de cette technique diagnostique basée sur l'utilisation de sondes ADN spécifiques de l'espèce en font un outil important pour les futures études d'épidemiologie de la trypanosomiase africaine.

Type
Research Article
Copyright
Copyright © ICIPE 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allsopp, B., Carrington, M., Baylis, H., Sohal, S., Dolan, T. and Iams, K. (1989) Improved characterization of Theileriaparva isolates using the polymerase chain reaction and oligonucleotide probes. Mol. Biochem. Parasitol. 35, 137148.CrossRefGoogle Scholar
Ashcroft, M. T. (1959) The importance of African wild animals as reservois of trypanosomiasis. E. Afr. Med. J. 36, 289297.Google ScholarPubMed
Barnes, B. A., Mottram, J., Selkirk, M. and Agabian, N. (1989) Two variant surface glycoprotein genes distinguish between substrains of Trypanosoma brucei gambiense. Mol. Biochem. Parasitol. 34, 135146.CrossRefGoogle ScholarPubMed
Borst, P., Fase-Fowler, F., Frasch, A. C. C., Hoeijmakers, J. H. J. and Weijers, P. J. (1980) Characterization of DNA from Trypanosoma brucei and related trypanosomes by restriction endonuclease digestion. Mol. Biochem. Parasitol. 1, 221246.CrossRefGoogle Scholar
Buxton, P. A. (1955) The Natural History of Tsetse Flies. London School of Hygiene and Tropical Medicine Mem. No. 10, London.Google Scholar
Dickin, S. K. and Gibson, W. C. (1989) Hybridization with a repetitive probe reveals the presence of small chromosomes in Trypanosoma vivax. Mol. Biochem. Parasitol. 33, 135142.CrossRefGoogle ScholarPubMed
Feinberg, A. P. and Vogelstein, B. (1983) A technique for radio-labelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 613.CrossRefGoogle Scholar
Engvall, E. and Perlman, P. (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochem. 8, 871879.CrossRefGoogle ScholarPubMed
Gashumba, J. K. (1986) Two enzymatically distinct stocks of T. congolense. Res. Vet. Sci. 40, 411412.CrossRefGoogle Scholar
Gibson, W. G., Dukes, P., andGashumba, J. K. (1988) Species-specific DNA probes for the identification of African trypanosomes in tsetse flies. Parasitol. 97, 6373.CrossRefGoogle ScholarPubMed
Godfrey, D. G., Killick-Kendrick, R. and Ferguson, W. (1965) Bovine trypanosomiasis in Nigeria. IV. Observations on cattle trekked along a tradecattle route through areas infested with tsetse fly. Ann. Trop. Med. Parasitol. 59, 255269.CrossRefGoogle Scholar
Hoare, C. A. (1972) The Trypanosomes of Mammals. A Zoological Monograph. Blackwell Scientific Publications (London) pp. 1749.Google Scholar
Kimmel, B. E., ole-MoiYoi, O. K. and Young, J. R. (1987) Ingi, a 5.2 kb dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian lines. Mol. Cell. Biol. 7, 14651475.Google ScholarPubMed
Knowles, G., Betschart, B., Kukla, B. A., Scott, J. R. and Majiwa, P. A. O. (1988) Genetically discrete populations of Trypanosoma congolense from livestock on the Kenya Coast. Parasitol. 96, 461474.CrossRefGoogle Scholar
Kukla, B. A., Majiwa, P. A. O., Young, J. R., Moloo, S. K. and ole-MoiYoi, O. K. (1987) Use of species-specific DNA probes for detection and identification of trypanosome infection in tsetse flies. Parasitol. 95, 116.CrossRefGoogle ScholarPubMed
Kurstak, E. (1986) Enzyme Immunodiagnosis. Academic Press (London, New York).Google Scholar
Losos, G. J. and Ikede, B. O. (1972) Review of pathology of diseases in domestic and laboratory animals caused by Trypanosoma congolense, T. vivax, T. brucei, T. rhodesiense and T. gambiense Vet. Pathol. (suppl.) 9, 171.Google Scholar
Lumsden, W. H. R., Herbert, W.H. and McNeillage, G. J. C. (1973) Techniques with Trypanosomes. Churchill Livingston Publishers, Edinburgh and London, pp. 5794.Google Scholar
Majiwa, P. A. O., Hamers, R., Van Meirvenne, N. and Matthyssens, G. (1986) Evidence for genetic diversity in Trypanosoma (Nannomonas) congolense. Parasitol. 93, 291304.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Masake, R. A., Nantulya, V. M., Hamers, R. and Matthyssens, G. (1985) Trypanosoma (Nannomonas) congolense Identification of two karyotypic groups. EMBO J. 4, 33073313.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O. and Otieno, L. H. (1989) Speciesspecific DNA probes reveal simultaneous infection of tsetse flies with different trypanosome species. In VIII International Congress of Protozoology, Japan, 1989. Abstract No. IID 1545.Google Scholar
Maniatis, T., Fritsch, E. F. and Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual. New York, Cold Spring Harbor Laboratory.Google Scholar
Masake, R. A., Nyambati, V. M., Nantulya, V. M., Majiwa, P. A. O., Moloo, S. K. and Musoke, A. J. (1988) The chromosome profiles of Trypanosoma congolense isolates from Kilifi, Kenya, and the relationship to serodeme identity. Mol. Biochem. Parasitol. 30, 105112.CrossRefGoogle ScholarPubMed
Massamba, N. N. and Williams, R. O. (1984) Distinction of African trypanosome species using nucleic acid hybridization. Parasitol. 88, 5565.CrossRefGoogle ScholarPubMed
McNamara, J., Snow, W. F. and Gibson, W.C. (1989) DNA probes for identification of trypanosomes in tsetse flies. International Council for Trypanosomiasis Research and Control (ISCTRC) Proceedings 20th Meeting Mombasa, Kenya 1989. Abstract No. 305.Google Scholar
Meinkoth, J. and Wahl, G. (1984) Hybridization of nucleic acids immobilized on solid supports. Anal. Biochem. 138, 267284.CrossRefGoogle ScholarPubMed
Moloo, S. K., Dar, F. and Kamunya, G. W. (1982) The transmission of mixed infections of pathogenic Trypanosoma species to susceptible hosts by Glossina morsitans. Ada Trop. 39, 303306.Google ScholarPubMed
Mullis, K. B. and Faloon, F. A. (1987) Specific synthesis of DNA in vitro via a polymerase catalysed chain reaction. Methods in Enzymol. 155, 335350.CrossRefGoogle Scholar
Mulligan, H. W. (1970) The African Trypanosomiases. George Allen and Unwin, London, pp. 1950.Google Scholar
Nantulya, V. M. (1989) An antigen detection enzyme immunoassay for diagnosis of rhodesiense sleeping sickness. Parasite Immunol. 11, 6975.CrossRefGoogle ScholarPubMed
Nantulya, V. M., Lindquist, K. J., Diall, O. and Olaho-Mukani, W. (1989) Two simple antigendetection enzyme immunoassays for the diagnosis of Trypanosoma evansi infections in the dromedary camel (Camelus dromedarius). Trop. Med. Parasitol. 40, 415418.Google ScholarPubMed
Nyeko, J. H. P., Majiwa, P. A. O. and ole-Moi Yoi, O. K. (1989) Field application of recombinant DNA probes in the identification of trypanosome isolates from Uganda. In VIII International Congress of Protozoology, Japan, 1989. Abstract No. 11D 1530.Google Scholar
ole-Moi Yoi, O. K. (1987) Trypanosome speciesspecific DNA probes to detect infection in tsetse flies. Parasitol. Today 3, 7174.Google Scholar
Oste, C. (1988) Polymerase chain reaction. Bio Tech. 6, 162167.Google ScholarPubMed
Paindavoine, P., Pays, E., Laurent, M., Geltmeyer, Y., Le Ray, D., Mehlitz, D., and Steinert, M. (1986) The use of DNA hybridization and numerical taxonomy in determining relationships between Trypanosoma brucei stocks and subspecies. Parasitol. 92, 3150.CrossRefGoogle ScholarPubMed
Paris, J., Murray, M. and McOdimba, F. A. (1982) A comparative evaluation of the parasitological techniques currently available for diagnosis of African trypanosomiasis in cattle. Acta Trop. 39, 307316.Google ScholarPubMed
Pettersson, U. and Hyppia, T. (1985) Nucleic Acid Hybridization; an alternative tool in diagnostic microbiology. Immunol. Today 6, 268272.CrossRefGoogle ScholarPubMed
Rickman, L. R. and Robson, J. (1970) The testing of proven Trypanosoma brucei and T. rhodesiense strains by blood incubation infectivity test. Bull. WHO 42, 911916.Google Scholar
Tijssen, P. (1985) Practice and theory of enzyme immunoassays. In Laboratory Techniques in Biochemistry and Molecular Biology (Edited by Knippenberg, Burdonand), pp. 1349. Elsevier, New York.Google Scholar
Viscindi, R. P. and Yolken, R. H. (1987) Molecular diagnosis of infectious diseases by nucleic acid hybridization. Mol. and Cell. Probes 1, 314.CrossRefGoogle Scholar
Yolken, R. H. (1982) Enzyme immunoassays for the detection of infectious antigens in body fluids: Current limitations and future prospects. Rev. Infect. Dis. 4, 3567.CrossRefGoogle ScholarPubMed
Young, C. J. and Godfrey, D. G. (1983) Enzyme polymorphism and the distribution of Trypanosoma congolense isolates. Ann. Trop. Med. Parasitol. 77, 467481.CrossRefGoogle ScholarPubMed
Wirth, D. F. and McMahon-Platt, D. (1982) Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions. Proc. Nat. Acad. Sci. (USA) 79, 69997003.CrossRefGoogle ScholarPubMed