Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T22:50:25.595Z Has data issue: false hasContentIssue false

Modern Concepts in Immune Recognition and Lymphocyte Activation: Relevance for the Development of Useful Vaccines

Published online by Cambridge University Press:  14 October 2009

Ronald N. Germain
Affiliation:
National Institute of Allergy and Infectious Diseases

Abstract

Adaptive immunity requires both specific recognition of an antigen and its translation into appropriate lymphocyte responses. This paper reviews the striking differences in B- and T-lymphocyte antigen recognition, details the pathways for conversion of protein antigens into peptide–major histocompatibility complex molecule ligands for T-cell receptors, and summarizes the roles of costimulatory signals in lymphocyte activation. This information is used to suggest new approaches for the rational design of vaccines.

Type
Special Section: Vaccines and Public Health: Assessing Technologies and Public Policies
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Alexander, M. A., Damico, C. A., Wieties, K. M., et al. Correlation between CD8 dependency and determinant density using peptide-induced, Ld-restricted cytotoxic T lymphocytes. Journal of Experimental Medicine, 1991, 173, 849–58.CrossRefGoogle ScholarPubMed
2.Amigorena, S., Bonnerot, C., Drake, J. R., et al. Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B lymphocytes. Science, 1992, 256, 1808–12.CrossRefGoogle ScholarPubMed
3.Babbitt, B. P., Allen, P. M., Matsueda, G., et al. Binding of immunogenic peptides to la histocompatibility molecules. Nature, 1985, 317, 359–61.CrossRefGoogle Scholar
4.Berzofsky, J. A., & Berkower, I. J. Immunogenicity and antigen structure. In E. Paul, W. (ed.), Fundamental immunology, 2nd ed.New York: Raven Press, 1989, 169208.Google Scholar
5.Bjorkman, P. J., Saper, M. A., Samraoui, B., et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature, 1987, 329, 506–12.CrossRefGoogle ScholarPubMed
6.Braciale, T. J., & Braciale, V. L.Antigen presentation: Structural themes and functional variations. Immunology Today, 1991, 12, 124–29.CrossRefGoogle ScholarPubMed
7.Brown, J. H., Jardetzky, T., Saper, M. A., et al. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature, 1988, 332, 845–50.CrossRefGoogle ScholarPubMed
8.Chicz, R. M., Urban, R. G., Gorga, J. C., et al. The predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature, 1992, 358, 764–68.CrossRefGoogle ScholarPubMed
9.Davis, M. M., & Bjorkman, P. J.T-cell antigen receptor genes and T-cell recognition. Nature, 1988, 334, 395402.CrossRefGoogle ScholarPubMed
10.Dembic, Z., Haas, W., Weiss, S., et al. Transfer of specificity by murine a and P T-cell receptor genes. Nature, 1986, 320, 232–38.CrossRefGoogle Scholar
11.Evavold, B. D., & Allen, P. M.Separation of IL-4 production from Th cell proliferation by an altered T cell receptor ligand. Science, 1991, 252, 1308–10.CrossRefGoogle ScholarPubMed
12.Falk, K., Rotzschke, O., Stevanovic, S., et al. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature, 1991, 351, 290–96.CrossRefGoogle ScholarPubMed
13.Freedman, A. S., Freeman, G. J., Rhynhart, K., et al. Selective induction of B7/BB-1 on interferon-gamma stimulated monocytes: A potential mechanism for amplification of T cell activation through the CD28 pathway. Cell Immunology, 1991, 137, 429–37.CrossRefGoogle ScholarPubMed
14.Freeman, G. J., Freedman, A. S., Segil, J. M., et al. B7, a new member of the Ig super-family with unique expression on activated and neoplastic B cells. Journal of Immunology, 1989, 143, 2714–22.CrossRefGoogle Scholar
15.Fremont, D. H., Matsumura, M., Stura, E. A., et al. Crystal structures of two viral peptides in complex with murine class I H-2Kb. Science, 1992, 257, 919–27.CrossRefGoogle ScholarPubMed
16.Garrett, T. P., Saper, M. A., Bjorkman, P. J., et al. Specificity pockets for the side chains of peptide antigens in HLA-Aw68. Nature, 1989, 342, 692–96.CrossRefGoogle ScholarPubMed
17.Germain, R. N.The ins and outs of antigen processing and presentation. Nature, 1986, 322, 687–89.CrossRefGoogle ScholarPubMed
18.Germain, R. N., & Margulies, D. H.The biochemistry and cell biology of antigen processing and presentation. Annual Review of Immunology, 1993, 11, 403–50.CrossRefGoogle ScholarPubMed
19.Germain, R. N., & Rinker, A. G. Jr. Peptide binding inhibits protein aggregation of invariant-chain free MHC class II dimers and promotes surface expression of occupied molecules. Nature, 1993, 363, 725–28.CrossRefGoogle ScholarPubMed
20.Gimmi, C. D., Freeman, G. J., Gribben, J. G., et al. B-cell surface antigen B7 provides a costimulatory signal that induces T cells to proliferate and secrete interleukin 2. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 6575–79.CrossRefGoogle ScholarPubMed
21.Guerder, S., & Matzinger, P.Activation versus tolerance: A decision made by T helper cells. Cold Spring Harbor Symposium on Quantitative Biology, 1989, 2, 799805.CrossRefGoogle Scholar
22.Harding, C. V., Collins, D., & Unanue, E. R.Processing of liposome-encapsulated antigens targeted to specific subcellular compartments. Research in Immunology, 1992, 143, 188–91.CrossRefGoogle ScholarPubMed
23.Harding, F. A., McArthur, J. G., Gross, J. A., et al. CD28-mediated signaling costimu-lates murine T cells and prevents induction of anergy in T-cell clones. Nature, 1992, 356, 607.CrossRefGoogle ScholarPubMed
24.Heinzel, F. P., Sadick, M. D., Holaday, B. J., et al. Reciprocal expression of interferongamma or interleukin 4 during the resolution or progression of murine leishmaniasis: Evidence for expansion of distinct helper Tcell subsets. Journal of Experimental Medicine, 1989, 169, 5972.CrossRefGoogle ScholarPubMed
25.Hood, L., Steinmetz, M., & Malissen, B.Genes of the major histocompatibility complex of the mouse. Annual Review of Immunology, 1983, 1, 529–68.CrossRefGoogle ScholarPubMed
26.Hunt, D. F., Henderson, R. A., Shabanowitz, J., et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science, 1992, 255, 1261–63.CrossRefGoogle Scholar
27.Hunt, D. F., Michel, H., Dickinson, T. A., et al. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science, 1992, 256, 1817–20.CrossRefGoogle Scholar
28.Jardetzky, T. S., Lane, W. S., Robinson, R. A., et al. Identification of self peptides bound to purified HLA-B27. Nature, 1991, 353, 326–29.CrossRefGoogle ScholarPubMed
29.Koulova, L., Clark, E. A., S, , et al. The CD28 ligand B7/BB1 provides costimulatory signal for alloactivation of CD4+ T cells. Journal of Experimental Medicine, 1991, 173, 759–62.CrossRefGoogle ScholarPubMed
30.Lanzavecchia, A.Antigen-specific interaction between T and B cells. Nature, 1985, 314, 537–39.CrossRefGoogle ScholarPubMed
31.Lee, F., Yokota, T., Chiu, C. P., et al. The molecular cloning of interleukins 4, 5 and 6: Multifunctional hemopoietic growth factors. Behring Institute Mitteilungen, 1988, 83, 814.Google Scholar
32.Le Gros, G., Ben-Sasson, S., Seder, R., et al. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. Journal of Experimental Medicine, 1990, 172, 921–29.CrossRefGoogle ScholarPubMed
33.Linsley, P. S., Brady, W., Grosmaire, L., et al. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. Journal of Experimental Medicine, 1991, 173, 721–30.CrossRefGoogle Scholar
34.Mackett, M., Yilma, T., Rose, J. K., et al. Vaccinia virus recombinants: Expression of VSV genes and protective immunization of mice and cattle. Science, 1985, 227, 433–35.CrossRefGoogle ScholarPubMed
35.Madden, D. R., Gorga, J. C., Strominger, J. L., et al. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature, 1991, 353, 321–25.CrossRefGoogle Scholar
36.Matsumura, M., Fremont, D. H., Peterson, P. A., et al. Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science, 1992, 257, 927–34.CrossRefGoogle ScholarPubMed
37.Mosmann, T. R., Cherwinski, H., Bond, M. W., et al. Two types of murine helper T cell clone. I: Definition according to profiles of lymphokine activities and secreted proteins. Journal of Immunology, 1986, 136, 2348–57.CrossRefGoogle ScholarPubMed
38.Mueller, D. L., Jenkins, M. K., & Schwartz, R. H.Clonal expansion versus functional clonal inactivation: A costimulatory signaling pathway determines the outcome of T cell antigen receptor occupancy. Annual Review of Immunology, 1989, 7, 445–80.CrossRefGoogle Scholar
39.Nelson, C. A., Roof, R. W., McCourt, D. W., et al. Identification of the naturally processed form of hen egg white lysozyme bound to the murine major histocompatibility complex class II molecule I-Ak. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 7380–83.CrossRefGoogle Scholar
40.Noelle, R. J., Roy, M., Shepherd, D. M., et al. A., & Aruffo, A.A 39-kDa protein on activated helper T cell binds CD40 and transduces the signal for cognate activation of B cells. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 6550–54.CrossRefGoogle ScholarPubMed
41.Noelle, R. J., & Snow, E. C.T helper cell-dependent B cell activation. FASEB Journal, 1991, 5, 2770–76.CrossRefGoogle ScholarPubMed
42.Otten, G. R., & Germain, R. N.Split anergy in a CD8+ T cell: Receptor-dependent cytolysis in the absence of interleukin-2 production. Science, 1991, 251, 1228–31.CrossRefGoogle Scholar
43.Otten, G. R., & Germain, R. N. Unpublished observations.Google Scholar
44.Pamer, E. G., Wang, C.-R., Flaherty, L., et al. H-2M3 presents a Listeria monocytogenes peptide to cytotoxic T lymphocytes. Cell, 1992, 70, 215–23.CrossRefGoogle ScholarPubMed
45.Pfeifer, J. D., Wick, M. J., Roberts, R. L., et al. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature, 1993, 361, 359–62.CrossRefGoogle ScholarPubMed
46.Racioppi, L., Ronchese, F., Matis, L. A., et al. Peptide-MHC class II complexes with mixed agonist-antagonist properties provide evidence for ligand-related differences in T cell receptor-dependent intracellular signaling. Journal of Experimental Medicine, 1993, 177, 1047–60.CrossRefGoogle Scholar
47.Razi-Wolf, Z., Freeman, G. J., Galvin, F., et al. Expression and function of the murine B7 antigen, the major costimulatory molecule expressed by peritoneal exudate cells. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 4210–14.CrossRefGoogle ScholarPubMed
48.Ress, M. A., Rosenberg, A. S., Munitz, T. I., et al. In vivo induction of antigen-specific transplantation tolerance to Qala by exposure to alloantigen in the absence of T-cell help. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 2765–69.CrossRefGoogle Scholar
49.Reiser, H., Freeman, G. J., Razi, W. Z., et al. Murine B7 antigen provides an efficient costimulatory signal for activation of murine T lymphocytes via the T-cell receptor/CD3 complex. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 271–75.CrossRefGoogle ScholarPubMed
50.Rock, K. L., Benacerraf, B., & Abbas, A. K.Antigen presentation by hapten-specific B lymphocytes. I: Role of surface immunoglobulin receptors. Journal of Experimental Medicine, 1984, 160, 1102–13.CrossRefGoogle ScholarPubMed
51.Rudensky, A., Preston, H. P., Hong, S. C., et al. Sequence analysis of peptides bound to MHC class II molecules. Nature, 1991, 353, 622–27.CrossRefGoogle ScholarPubMed
52.Rudensky, A. Y., Preston-Hulbert, P., Al-Ramadi, B., et al. Truncation variants of peptides isolated from MHC class II molecules suggest sequence motifs. Nature, 1992, 359, 429–31.CrossRefGoogle Scholar
53.Saito, T., Weiss, A., Miller, J., Norcross, M. A., et al. Specific antigen-la activation of transfected human T cells expressing murine Ti αβ-human T3 receptor complexes. Nature, 1987, 325, 125–30.CrossRefGoogle Scholar
54.Saper, M. A., Bjorkman, P. J., & Wiley, D. C.Refined structure of the human histocom-patibility antigen HLA-A2 at 2.6 A resolution. Journal of Molecular Biology, 1991, 219, 277319.CrossRefGoogle Scholar
55.Schwartz, R. H.A cell culture model for T lymphocyte clonal anergy. Science, 1990, 248, 1349–56.CrossRefGoogle Scholar
56.Scott, P.IFN-gamma modulates the early development of Thl and Th2 responses in a murine model of cutaneous leishmaniasis. Journal of Immunology, 1991, 147, 3149–55.CrossRefGoogle Scholar
57.Snapper, C. M., & Paul, W. E.Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science, 1987, 236, 944–47.CrossRefGoogle Scholar
58.Snider, D. P., & Segal, D. M.Targeted antigen presentation using crosslinked antibody heteroaggregates. Journal of Immunology, 1987, 139, 1609–16.CrossRefGoogle ScholarPubMed
59.Steinman, R., & Inaba, K.Immunogenicity: Role of dendritic cells. Bioessays, 1989, 10, 145–52.CrossRefGoogle ScholarPubMed
60.Swain, S. L., Weinberg, A. D., English, M., et al. IL-4 directs the development of Th2-like helper effectors. Journal of Immunology, 1990, 145, 3796–806.CrossRefGoogle ScholarPubMed
61.Takahashi, H., Nakagawa, Y., Pendleton, C. D., etal. Induction of broadly cross-reactive cytotoxic T cells recognizing an HIV-1 envelope determinant. Science, 1992, 255, 333–36.CrossRefGoogle ScholarPubMed
62.Tang, D. C., DeVit, M., ' Johnston, S. A.Genetic immunization is a simple method for eliciting an immune response. Nature, 1992, 356, 152–54.CrossRefGoogle ScholarPubMed
63.Townsend, A. R., Gotch, F. M., & Davey, J.Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell, 1985, 42, 457–67.CrossRefGoogle ScholarPubMed
64.Van Bleek, G. M., & Nathenson, S. G.Isolation of an endogenously processed immuno-dominant viral peptide from the class I H-2Kb molecule. Nature, 1990, 348, 213–16.CrossRefGoogle Scholar