Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-03T02:13:36.584Z Has data issue: false hasContentIssue false

Clinical Potential of Magnetic Resonance Spectroscopy in Renal Disease

Published online by Cambridge University Press:  10 March 2009

Brian Ross
Affiliation:
Nuffield Department of Clinical MedicineJohn Radcliffe Hospital, University of Oxford

Extract

Magnetic resonance spectroscopy (MRS), especially of 31phosphorus, seeks to collect biochemical and metabolic information related to energy metabolism, intracellular pH, and oxygen delivery to the kidney (1,2). Earlier applications in clinical medicine have been established in diagnosis of metabolic myopathy (3,4), infantile cerebral anoxia (5), stroke (6,7), and in vascular insufficiency of the lower limb (8).

Type
An International View of Magnetic Resonance—Imaging and Spectroscopy
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shulman, R. G.NMR spectroscopy of living cells. Scientific American, 1983, 247, 7683.Google Scholar
2.Ross, B. D.The diagnostic potential of nuclear magnetic resonance. Recent Advances in Clinical Biochemistry, 1984, 3, 3161.Google Scholar
3.Ross, B. D., Radda, G. K., Gadian, D. G., Rocker, G., Esiri, M., & Falconer-Smith, J.Examination of a case of suspected McArdle's syndrome by 31P NMR. New England Journal of Medicine, 1981, 304, 1338–42.CrossRefGoogle Scholar
4.Ross, B. D., & Radda, G. K.Application of 31P NMR to inborn errors of muscle metabolism. 1983, Biochemical Society Transactions, 11, 627–30.CrossRefGoogle ScholarPubMed
5.Cady, E. B., Costello, A. M. de L., Dawson, M. J., Delpy, D. T., Hope, P. L., Reynolds, E. O. R., Tofts, P. S., & Wilkie, D. R.Non invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectros copy. The Lancet, 1983, 1, 1059–62.Google Scholar
6.Bottomley, P. A., Hart, H. R. Jr, & Edelstein, W. A.Anatomy and metabolism of normal human brain studied by magnetic resonance at 1.5 T. Radiology, 1984, 150, 441–46.Google Scholar
7.Hilton, Jones D., Arnold, D., & Bore, P.Studies of human cerebral metabolism. Proceedings of the Society of Magnetic Resonance in Medicine, 1984, 329–30.Google Scholar
8.Chance, B., Eleff, S., Leigh, J. S., Sokolow, D., & Sapega, A.Mitochondrial regulation of PCr/Pi ratios in exercising human muscle: A gated 31P NMR study. Proceedings of the National Academy of Sciences, 1981, 78, 6714–18.CrossRefGoogle ScholarPubMed
9.Ross, B. D., Marshall, V. M., Smith, M. B., Bartlett, S. B., & Freeman, D. M.Monitoring response to chemotherapy of intact human tumors by 31P NMR. The Lancet, 1984, 1, 641–46.CrossRefGoogle Scholar
10.Evanochko, W. T., Ng, T. C., Lilly, M. B., Lawson, A. J., Corbett, T. H., Durrant, J. R., & Glickson, J. D.In vivo 31P NMR. Biochim Biophys Acta, 1983, 762, 325–36.Google Scholar
11.Chan, L. K., Ledingham, J. G. G., Dixon, J. A., Thulborn, K. R., Waterton, J. L., Radda, G. K., & Ross, B. D. Acute renal failure: A proposed mechanism based upon 31 P nuclear magnetic resonance studies in the rat. In Eliahou, H. E., (ed.), Acute Renal Failure. London: Libbey, 1982, 3541.Google Scholar
12.Freeman, D. M., Chan, L., Yahaya, H., Holloway, P., & Ross, B. D.Renal metabolic rate during hypotension using saturation transfer magnetic resonance. Kidney International, in press.Google Scholar
13.Chan, L., French, M. E., Gadian, D. G., Morris, P. J., Radda, G. K., Bore, P. J., Ross, B. D., & Styles, P. Study of human kidneys prior to transplantation, by phosphorus nuclear magnetic resonance. In Pegg, D. E., Jacobsen, I. A., & Halasz, N. A., (eds.), Organ Preservation—basic and applied. Edinburgh: Churchill Livingstone.Google Scholar
14.Winearls, C., Chan, L., Bore, P. J. Unpublished work in Oxford.Google Scholar
15.Ross, B. D., Radda, G. K., Gadian, D. G., Taylor, D., Bore, P., & Styles, P.Preliminary observations on the metabolic responses to exercise in human beings. Ciba Symp, 1981, 87, 145–52.Google Scholar
16.Freeman, D. M., Bartlett, S., Radda, G. K., Ross, B. D.Energetics of sodium transport in the kidney: Saturation transfer 31 P NMR. Biochim Biophys Acta, 1983, 762, 325–36.Google Scholar
17.Freeman, D. M., Chan, L., Yahaya, H., Holloway, P., & Ross, B. D.Magnetic resonance spectroscopy for the determination of renal metabolic rate in vivo. Kidney International, in press.Google Scholar
18.Wong, G. G. Ph.D. thesis, University of Oxford, 1981.Google Scholar
19.Bogussky, R. T., Garwood, M., Acosta, G., Cogwill, L., Mason, G., & Schleich, T.Noninvasive analysis of tissue heterogeneity: NMR study of in vivo rat kidney. Clinical Research, 1984, (Abst.) 33, 107A.Google Scholar
20.Gadian, D. G., Proctor, E., Sprague, D. B., Tarbot, D. F., Williams, S. R., Brown, F. F.1H NMR studies of muscle metabolism. Biochemical Society Transactions, 1985, 839–42.Google Scholar
21.Rothman, D. L., Behar, K. L., Hetherington, H. P., & Shulman, R. G.Homonuclear 1H double resonance difference spectroscopy of the rat brain in vivo. Proceedings of the National Academy of Sciences, 1984, 81, 6330–34.CrossRefGoogle ScholarPubMed
22.Cohen, S. M., Shulman, R. G., & McLaughlin, A. C.Effects of ethanol on alanine metabolism in perfused mouse liver studied by 13C NMR. Proceedings of the National Academy of Sciences, 1979, 76, 4808–12.Google Scholar
23.Perman, W., Hayes, C. E., & Glover, G. H.The physics of in vivo human NMR imaging. Journal of Magnetic Resonance in Medicine supplement, 1984, 3,Google Scholar
24.Sehr, P. A., Bore, P. J., Papatheophanis, J., & Radda, G. K.Non-destructive determination of metabolites and tissue pH in the kidney by 31P NMR. Brit J Exp Path, 1979, 60, 632–41.Google Scholar
25.Marshall, V. M., Ross, B. D., & Smith, M. K. Unpublished work: Spectrum of perfused dog kidney.Google Scholar
26.Moon, R. B., & Richards, J. H.Determination of intracellular pH by 31P magnetic resonance. Journal of Biological Chemistry, 1973, 248, 7276–78.CrossRefGoogle ScholarPubMed
27.Lee, J. K. T., Dixon, W. T., & Ling, D.Fatty infiltration of the liver: Demonstration by proton spectroscopic imaging. Radiology, 1984, 153, 195201.CrossRefGoogle ScholarPubMed
28.DHSS (Department of Health and Social Services) commissioned report: Cost differentials of modern imaging methods. University of York,Google Scholar
29. Technical literature of: General Electric, Milwaukee, Wisconsin; Oxford Research Systems/Brucker, Eynsham, Oxfordshire; Technicare Corporation, Cleveland, Ohio.Google Scholar
30.Bendall, R.Journal of Magnetic Resonance, 1983, 53, 365–85.Google Scholar
31.Bottomley, P. A., Roster, T. B., & Darrow, R. D.Depth-resolved surface spectros copy (DRESS) for in vivo 1H, 31P, and 13C NMR. Journal of Magnetic Resonance, 1984, 59, 338–42.Google Scholar
32.Smith, M. K., Radda, G. K.Surface coils: Variations on a theme. Proceedings of the 7th European Experimental NMR Conference, 1984, 94.Google Scholar
33.Foster, M. A.Magnetic resonance in medicine and biology. Oxford: Pergamon Press, 1983.Google Scholar
34.Freeman, D. M., Chan, L. K., & Ross, B. D.Applications of NMR spectroscopy in renal physiology and medicine. Kidney International Editorial Review, 01, 1986.Google Scholar
35.Weiner, M. W., Burke, K., Green, K., Wemmer, D., Wade-Jardetsky, N., & Hardetsky, O.Feasibility of using 31P NMR to study renal metabolism in vivo. Kidney International, 1981, 20, 578–79.Google Scholar
36.Siegal, N. J., Avison, M. J., Reilly, H. F., Alger, J. R., & Shulman, R. G.Enhanced recovery of renal ATP with post–ischemic infusion of ATP-MgCl2, determined with 31P NMR. American Journal of Physiology, 1983, 242, F530–F534.Google Scholar
37.Ackerman, J. J. H., Grove, T. H., Wong, G. G., Gadian, D. G., Radda, G. K.Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature, 1980, 283, 167–70.CrossRefGoogle ScholarPubMed
38.Bore, P. J., Sehr, P. A., Chan, L., Thulborn, K. R., Ross, B. D., Radda, G. K.The importance of pH in renal preservation. Transplant Proceedings, 1981, 13, 707–9.Google Scholar
39.Chan, L. K. Ph.D. thesis, University of Oxford, 1983.Google Scholar
40.Ackerman, J. J. H., Lowry, M., Radda, G. K., Ross, B. D., & Wong, G. G.The role of intrarenal pH in regulation of ammoniagenesis: 31P-NMR studies of the isolated perfused rat kidney. Journal of Physiology, 1981, 315, 6579.CrossRefGoogle Scholar
41.Freeman, D. M., Lowry, M., Radda, G. K., & Ross, B. D.31P-NMR analysis of the renal response to respiratory acidosis. Biochem Soc Transac, 1982, 10, 399.Google Scholar
42.Forsen, S., & Hoffman, R. A.Study of moderately rapid exchange reactions by means of nuclear magnetic double-resonance. Journal of Chem Physics, 1963, 39, 28922901.CrossRefGoogle Scholar
43.Matthews, P. M., & Radda, G. K. Applications of NMR for the study of myocardial metabolism and pharmacology. In Schwartz, A., (ed.), Methods in Pharmacology Vol. 5. New York: Academic Press, 1984.Google Scholar
44.Ross, B. D., Freeman, D. M., & Chan, L. Phosphorus metabolites by NMR. In Massry, S. G., Muschio, G., & Ritz, E., (eds.), Phosphate and Mineral Metabolism. Plenum Press: New York, 1984.Google Scholar
45.Koretsky, A. P., Wang, S., Murphy-Boesch, J., Klein, M. P., James, T. L., & Weiner, M. W.31P NMR spectroscopy of rat organs in situ, using chronically implanted radio-frequency coils. Proceedings of the National Academy of Sciences, 1983, 80, 7491–95.CrossRefGoogle Scholar
46.Evelhoch, J. L., Sapareto, S. A., Jick, D. E., & Ackerman, J. J. H.In vivo metabolic effects of hyperglycaemia in murine irradiation-induced fibrosarcoma: A 31P NMR investigation. Proceedings of the National Academy of Sciences, 1984, 81, 64966500.CrossRefGoogle Scholar
47.Morris, P. J.Renal Transplantation. London: John Wiley, 1984.Google Scholar