Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T06:08:34.105Z Has data issue: false hasContentIssue false

Methodology for calculating a country's need for positron emission tomography scanners

Published online by Cambridge University Press:  24 January 2008

Irina Cleemput
Affiliation:
Belgian Health Care Knowledge Centre (KCE)
Cécile Camberlin
Affiliation:
Belgian Health Care Knowledge Centre (KCE)
Ann Van den Bruel
Affiliation:
Belgian Health Care Knowledge Centre (KCE)

Abstract

Objectives: The aim of this study was to develop a methodology for calculating the need for positron emission tomography (PET) scanners in a country and illustrate this methodology for Belgium.

Methods: First, levels of evidence were assigned to PET in different indications according to a standard hierarchical classification system. The level reached depends on whether there is evidence on diagnostic accuracy, impact on diagnostic thinking, therapeutic impact, impact on patient outcomes, or cost-effectiveness. Second, the number of patients eligible for PET for each indication was derived from a registry of PET. Third, the number of PET scanners needed in Belgium was estimated for different baseline hypotheses about maximum annual capacity of a scanner and the minimally required level of evidence.

Results: The number of PET scanners needed crucially depends on the level of evidence considered acceptable for the implementation of PET: the higher the level of evidence required, the lower the number of PET scanners needed. Belgium needs at least three and at most ten PET scanners. This contrasts with the thirteen currently approved.

Conclusions: Scientific evidence and information on the eligible population for a specific procedure are crucial elements for policy makers who wish to make evidence-based decisions about programming and planning of heavy medical equipment.

Type
GENERAL ESSAYS
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Agence d'Evaluation des Technologies et des Modes d'Intervention en Sante. La tomographie par émission de positrons au Québec. Montréal; 2003: xvi-270.Google Scholar
2. Agence Nationale d'Accréditation et d'Evaluation en Santé. Evaluation et état des lieux de la tomographie par émission de positons couplée à la tomodensitométrie (TEP-TDM). In: Santé HAd, ed. Saint-Denis La Plaine: HAS; 2005:113.Google Scholar
3. Agencia de Evaluacion deTecnologias Sanitarias. Positron emission tomography (PET) in cardiology. IPE-95/e (public report). Madrid: Agencia de Evaluacion de Tecnologias Sanitarias (AETS); 1995.Google Scholar
4. Agencia de Evaluacion deTecnologias Sanitarias. PET in non-neurological clinical oncology. IPE-97/11 (public report). Madrid: Agencia de Evaluacion de Tecnologias Sanitarias (AETS); 1997.Google Scholar
5. Agencia de Evaluacion deTecnologias Sanitarias. Positron emission tomography with fluordeoxyglucose (FDG-PET) in neurology. IPE-99/18. Madrid: Agencia de Evaluacion de Tecnologias Sanitarias (AETS); 1999.Google Scholar
6. AHRQ. FDG positron emission tomography for evaluating breast cancer-systematic review. Rockville: Agency for Healthcare Research and Quality (AHRQ); 2001.Google Scholar
7. AHRQ. Systematic review of positron emission tomography for follow-up of treated thyroid cancer. Rockville: Agency for Health Care Research and Quality (AHRQ); 2002:34.Google Scholar
8. BCBS. FDG positron emission tomography in head and neck cancer. Chicago: Blue Cross Blue Shield Association (BCBS); 2000.Google Scholar
9. BCBS. FDG positron emission tomography for evaluating breast cancer. Chicago: Blue Cross Blue Shield Association; 2001:95.Google Scholar
10. Bedford, M, Maisey, MN. Requirements for clinical PET: Comparisons within Europe. Eur J Nucl Med Mol Imaging 2004;31:208221.CrossRefGoogle Scholar
11. Berger, M, Gould, MK, Barnett, PG. The cost of positron emission tomography in six United States Veterans Affairs hospitals and two academic medical centers. AJR Am J Roentgenol 2003;181:359365.CrossRefGoogle ScholarPubMed
12. Cleemput, I, Dargent, G, Poelmans, J, et al. HTA Positron emission tomography in Belgium. Brussels: Federaal Kenniscentrum voor de Gezondheidszorg (KCE); 2005.Google Scholar
13. Comite d'Evaluation et de Diffusion des Innovations Technologiques. Positron emission tomography. Paris: Comite d'Evaluation et de Diffusion des Innovations Technologiques (CEDIT); 2001.Google Scholar
14. Danish Centre for Evaluation and Health Technology Assessment. Positron emissions tomography (PET) with 18-F-fluorodeoxyglucose (FDG). A literature review of evidence for clinical use in the fields of oncology, cardiology and neurology. Copenhagen: Danish Centre for Evaluation and Health Technology Assessment (DACEHTA) (formerly DIHTA); 2001.Google Scholar
15. Drummond, MF, Jefferson, TO. Guidelines for authors and peer reviewers of economic submissions to the BMJ. The BMJ Economic Evaluation Working Party. BMJ 1996;313:275283.CrossRefGoogle Scholar
16. FNCLCC, , Bourguet, P, Bosquet, L, et al. Recommandations pour la pratique clinique: Standards, Options et Recommandations 2003 pour l'utilisation de la tomographie par émission de positons au [18F]-FDG (TEP-FDG) en cancérologie (rapport intégral). In: FNCLCC, ed. Recommandations pour la pratique clinique. Paris: FNCLCC; 2003:290.Google Scholar
17. Fryback, DG, Thornbury, JR. The efficacy of diagnostic imaging. Med Decis Making 1991;11:8894.CrossRefGoogle ScholarPubMed
18. Health Technology Board for Scotland. Positron emission tomography (PET) imaging in cancer management. Glasgow: Health Technology Board for Scotland (HTBS) (merged into NHS Quality Improvement Scotland (NHS QIS)); 2002.Google Scholar
19. ICES, Laupacis A, Institute for Clinical Evaluative Sciences. Health technology assessment of PET (positron emission tomography). Toronto: Institute for Clinical Evaluative Sciences (ICES); 2001.Google Scholar
20. ICES, Laupacis A, Paszat L, Hodgson D, Institute for Clinical Evaluative Sciences. Health technology assessment of positron emission tomography in oncology—a systematic review. Toronto: Institute for Clinical Evaluative Sciences (ICES); 2004.Google Scholar
21. Keppler, JS, Conti, PS. A cost analysis of positron emission tomography. AJR Am J Roentgenol 2001;177:3140.CrossRefGoogle ScholarPubMed
22. Medical Services Advisory Committee. Positron emission tomography. Canberra: Medical Services Advisory Committee; 2000.Google Scholar
23. Muller, A, Stratmann-Schone, D, Klose, T, et al. Positron emission tomography—the economic efficacy. Koln: German Agency for Health Technology Assessment at the German Institute for Medical Documentation and Information; 2000.Google Scholar
24. Whiting, P, Rutjes, AW, Reitsma, JB, Bossuyt, PM, Kleijnen, J. The development of QUADAS: A tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003;3:25.CrossRefGoogle ScholarPubMed