Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T04:07:33.648Z Has data issue: false hasContentIssue false

Glycated hemoglobin as a surrogate for evaluating the effectiveness of drugs in diabetes mellitus trials: a systematic review and trial-level meta-analysis

Published online by Cambridge University Press:  22 December 2021

Paola Andrea Rivera*
Affiliation:
Escuela de Posgrado, Universidad Privada Antenor Orrego, Trujillo, Peru
Milton J. M. Rodríguez-Zúñiga
Affiliation:
Escuela de Posgrado, Universidad Nacional Mayor de San Marcos, Lima, Peru
José Caballero-Alvarado
Affiliation:
Escuela de Posgrado, Universidad Privada Antenor Orrego, Trujillo, Peru
Fabián Fiestas
Affiliation:
Instituto de Gestión y Evaluación de Tecnologías Sanitarias, Lima, Peru
*
Author for correspondence: Paola Andrea Rivera, E-mail: [email protected]

Abstract

Objective

The objective of this study was to investigate whether glycated hemoglobin (HbA1c) is a valid surrogate for evaluating the effectiveness of antihyperglycemic drugs in diabetes mellitus (DM) trials.

Methods

We conducted a systematic review of placebo-controlled randomized clinical trials (RCTs) evaluating the effect of a treatment on HbA1c (mean difference between groups) and clinical outcomes (relative risk of mortality, myocardial infarction, stroke, heart failure, and/or kidney injury) in patients with DM. Then, we investigated the association between treatment effects on HbA1c and clinical outcomes using regression analysis at the trial level. Lastly, we interpreted the correlation coefficients (R) using the cut-off points suggested by the Institute for Quality and Efficiency in Healthcare (IQWiG). HbA1c was considered a valid surrogate if it demonstrated a strong association: lower limit of the 95 percent confidence interval (95 percent CI) of R greater than or equal to .85.

Results

Nineteen RCTs were identified. All studies included adults with type 2 DM. None of the associations evaluated was strong enough to validate HbA1c as a surrogate for any clinical outcome: mortality (R = .34; 95 percent CI −.14 to .69), myocardial infarction (R = .20; −.30 to .61), heart failure (R = .08; −.40 to .53), kidney injury (R = −.04; −.52 to .47), and stroke (R = .81; .54 to .93).

Conclusions

The evidence from multiple placebo-controlled RCTs does not support the use of HbA1c as a surrogate to measure the effectiveness of antihyperglycemic drugs in DM studies.

Type
Assessment
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buyse, M, Molenberghs, G, Burzykowski, T, Renard, D, Geys, H. The validation of surrogate endpoints in meta-analyses of randomized experiments. Biostatistics. 2000;1:4967. doi:10.1093/biostatistics/1.1.49.CrossRefGoogle ScholarPubMed
Ciani, O, Buyse, M, Drummond, M, Rasi, G, Saad, ED, Taylor, RS. Time to review the role of surrogate end points in health policy: State of the art and the way forward. Value Health. 2017;20:487–95. doi:10.1016/j.jval.2016.10.011.CrossRefGoogle ScholarPubMed
EUnetHTA [Internet] Endpoints used in relative effectiveness assessment: Surrogate endpoints. Adapted version; 2015. p. 1–20. [cited 2021 Mar 4]. Available from: https://www.eunethta.eu/methodology-guidelines/Google Scholar
Institute for Quality and Efficiency in Health Care [Internet] Validity of surrogate endpoints in oncology. Executive summary of rapid report A10-05. Version 1.1; Status: 21.11.2011. Cologne, Germany. [cited 2021 Aug 9]. Available from: https://www.iqwig.de/download/a10-05_executive_summary_v1-1_surrogate_endpoints_in_oncology.pdf?rev=185859Google Scholar
Boussageon, R, Pouchain, D, Renard, V. Prevention of complications in type 2 diabetes: Is drug glucose control evidence based? Br J Gen Pract. 2017;67:85–7. doi:10.3399/bjgp17X689317.CrossRefGoogle ScholarPubMed
Weir, GC, Jameson, JL, De Groot, LJ. Endocrinology adult and pediatric: Diabetes mellitus and obesity. 6th ed. Philadelphia: Saunders; 2013. p. 426.Google Scholar
The Diabetes Control and Complications Trial Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86. doi:10.1056/NEJM199309303291401.CrossRefGoogle Scholar
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53. doi:10.1016/S0140-6736(98)07019-6.CrossRefGoogle Scholar
UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65. doi:10.1016/S0140-6736(98)07037-8.CrossRefGoogle Scholar
Rodriguez-Gutierrez, R, Montori, VM. Glycemic control for patients with type 2 diabetes: Our evolving faith in the face of evidence. Circ Cardiovasc Qual Outcomes. 2016;9:504–12. doi:10.1016/j.physbeh.2017.03.040.CrossRefGoogle ScholarPubMed
Bejan-Angoulvant, T, Cornu, C, Archambault, P, Tudrej, B, Audier, P, Brabant, Y, et al. Is HbA1c a valid surrogate for macrovascular and microvascular complications in type 2 diabetes? Diabetes Metab. 2015;41:195201. doi:10.1016/j.diabet.2015.04.001.CrossRefGoogle ScholarPubMed
Liao, HW, Saver, JL, Wu, YL, Chen, TH, Lee, M, Ovbiagele, B. Pioglitazone and cardiovascular outcomes in patients with insulin resistance, pre-diabetes and type 2 diabetes: A systematic review and meta-analysis. BMJ Open. 2017;7. doi:10.1136/bmjopen-2016-013927.CrossRefGoogle ScholarPubMed
Cheng, D, Gao, H, Li, W. Long-term risk of rosiglitazone on cardiovascular events — A systematic review and meta-analysis. Endokrynol Pol. 2018;69:381–94. doi:10.5603/EP.a2018.0036.Google ScholarPubMed
Lipska, KJ, Krumholz, HM. Is hemoglobin A1C the right outcome for studies of diabetes? JAMA. 2017;317:1017–18. doi:10.1016/j.physbeh.2017.03.040.CrossRefGoogle ScholarPubMed
Giugliano, D, Bellastella, G, Longo, M, Scappaticcio, L, Maiorino, MI, Chiodini, P, et al. Relationship between improvement of glycaemic control and reduction of major cardiovascular events in 15 cardiovascular outcome trials: A meta-analysis with meta-regression. Diabetes Obes Metab. 2020;22:1397–405. doi:10.1111/dom.14047.CrossRefGoogle ScholarPubMed
Huang, CJ, Wang, WT, Sung, SH, Chen, CH, Lip, GYH, Cheng, HM, et al. Blood glucose reduction by diabetic drugs with minimal hypoglycaemia risk for cardiovascular outcomes: Evidence from meta-regression analysis of randomized controlled trials. Diabetes Obes Metab. 2018;20:2131–9. doi:10.1111/dom.13342.CrossRefGoogle ScholarPubMed
Ouzzani, M, Hammady, H, Fedorowicz, Z, Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst Rev. 2016;5:210. doi:10.1186/s13643-016-0384-4.CrossRefGoogle ScholarPubMed
Higgins, JPT, Altman, DG, Sterne, JAC. Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT, Green S (editors). Cochrane handbook for systematic reviews of interventions version 5.1.0 (Updated March 2011). Chichester, UK: John Wiley & Sons; 2011.Google Scholar
Dormandy, JA, Charbonnel, B, Eckland, DJ, Erdmann, E, Massi-Benedetti, M, Moules, IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (PROspective pioglitAzone clinical trial In macroVascular events): A randomised controlled trial. Lancet. 2005;366:1279–89. doi:10.1016/S0140-6736(05)67528-9.CrossRefGoogle ScholarPubMed
White, WB, Cannon, CP, Heller, SR, Nissen, SE, Bergenstal, RM, Bakris, GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327–35. doi:10.1056/NEJMoa1305889.CrossRefGoogle ScholarPubMed
Mann, JFE, Ørsted, DD, Brown-Frandsen, K, Marso, SP, Poulter, NR, Rasmussen, S, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017;377:839–48. doi:10.1056/NEJMoa1616011.CrossRefGoogle ScholarPubMed
Marso, SP, Bain, SC, Consoli, A, Eliaschewitz, FG, Jódar, E, Leiter, LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44. doi:10.1056/NEJMoa1607141.CrossRefGoogle ScholarPubMed
Neal, B, Perkovic, V, Mahaffey, KW, de Zeeuw, D, Fulcher, G, Erondu, N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57. doi:10.1056/NEJMoa1611925.CrossRefGoogle ScholarPubMed
Holman, RR, Bethel, MA, Mentz, RJ, Thompson, VP, Lokhnygina, Y, Buse, JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377:1228–39. doi:10.1056/NEJMoa1612917.CrossRefGoogle ScholarPubMed
Hernandez, AF, Green, JB, Janmohamed, S, D'Agostino, RB, Granger, CB, Jones, NP, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (harmony outcomes): A double-blind, randomised placebo-controlled trial. Lancet. 2018;392:1519–29. doi:10.1016/S0140-6736(18)32261-X.CrossRefGoogle ScholarPubMed
Perkovic, V, Jardine, MJ, Neal, B, Bompoint, S, Heerspink, HJL, Charytan, DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–306. doi:10.1056/NEJMoa1811744.CrossRefGoogle ScholarPubMed
Wiviott, SD, Raz, I, Bonaca, MP, Mosenzon, O, Kato, ET, Cahn, A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–57. doi:10.1056/NEJMoa1812389.CrossRefGoogle ScholarPubMed
Gerstein, HC, Colhoun, HM, Dagenais, GR, Diaz, R, Lakshmanan, M, Pais, P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet. 2019;394:121–30. doi:10.1016/S0140-6736(19)31149-3.CrossRefGoogle ScholarPubMed
Gerstein, HC, Colhoun, HM, Dagenais, GR, Diaz, R, Lakshmanan, M, Pais, P, et al. Dulaglutide and renal outcomes in type 2 diabetes: An exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet. 2019;394:131–8. doi:10.1016/S0140-6736(19)31150-X.CrossRefGoogle ScholarPubMed
Rosenstock, J, Perkovic, V, Johansen, OE, Cooper, ME, Kahn, SE, Marx, N, et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk. JAMA. 2019;321:69. doi:10.1001/jama.2018.18269.CrossRefGoogle ScholarPubMed
Zannad, F, Cannon, CP, Cushman, WC, Bakris, GL, Menon, V, Perez, AT, et al. Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: A multicentre, randomised, double-blind trial. Lancet. 2015;385:2067–76. doi:10.1016/S0140-6736(14)62225-X.CrossRefGoogle ScholarPubMed
Husain, M, Birkenfeld, AL, Donsmark, M, Dungan, K, Eliaschewitz, FG, Franco, DR, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019;381:841–51. doi:10.1056/NEJMoa1901118.CrossRefGoogle ScholarPubMed
Cannon, CP, Pratley, R, Dagogo-Jack, S, Mancuso, J, Huyck, S, Masiukiewicz, U, et al. Cardiovascular outcomes with Ertugliflozin in type 2 diabetes. N Engl J Med. 2020;383:1425–35. doi:10.1056/NEJMoa2004967.CrossRefGoogle ScholarPubMed
Gantz, I, Chen, M, Suryawanshi, S, Ntabadde, C, Shah, S, O'Neill, EA, et al. A randomized, placebo-controlled study of the cardiovascular safety of the once-weekly DPP-4 inhibitor omarigliptin in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2017;16:112. doi:10.1186/s12933-017-0593-8.CrossRefGoogle ScholarPubMed
Scirica, BM, Bhatt, DL, Braunwald, E, Steg, PG, Davidson, J, Hirshberg, B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–26. doi:10.1056/NEJMoa1307684.CrossRefGoogle ScholarPubMed
Lincoff, AM, Tardif, J-C, Schwartz, GG, Nicholls, SJ, Rydén, L, Neal, B, et al. Effect of aleglitazar on cardiovascular outcomes after acute coronary syndrome in patients with type 2 diabetes mellitus. JAMA. 2014;311:1515. doi:10.1001/jama.2014.3321.CrossRefGoogle ScholarPubMed
Zinman, B, Wanner, C, Lachin, JM, Fitchett, D, Bluhmki, E, Hantel, S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28. doi:10.1056/NEJMoa1504720.CrossRefGoogle ScholarPubMed
Wanner, C, Inzucchi, SE, Lachin, JM, Fitchett, D, von Eynatten, M, Mattheus, M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–34. doi:10.1056/NEJMoa1515920.CrossRefGoogle ScholarPubMed
Pfeffer, MA, Claggett, B, Diaz, R, Dickstein, K, Gerstein, HC, Køber L, V, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373:2247–57. doi:10.1056/NEJMoa1509225.CrossRefGoogle ScholarPubMed
Green, JB, Bethel, MA, Armstrong, PW, Buse, JB, Engel, SS, Garg, J, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373:232–42. doi:10.1056/NEJMoa1501352.CrossRefGoogle ScholarPubMed
Marso, SP, Daniels, GH, Brown-Frandsen, K, Kristensen, P, Mann, JFE, Nauck, MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22. doi:10.1056/NEJMoa1603827.CrossRefGoogle ScholarPubMed
Giugliano, D, Maiorino, MI, Longo, M, Bellastella, G, Chiodini, P, Esposito, K. Type 2 diabetes and risk of heart failure: A systematic review and meta-analysis from cardiovascular outcome trials. Endocrine. 2019;65:1524. doi:10.1007/s12020-019-01931-y.CrossRefGoogle ScholarPubMed
Verma, S, McMurray JJ, V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review. Diabetologia. 2018;61:2108–17. doi:10.1007/s00125-018-4670-7.CrossRefGoogle ScholarPubMed
Fleming, TR. Surrogate end points in clinical trials: Are we being misled? Ann Intern Med. 1996;125:605.CrossRefGoogle ScholarPubMed
U.S. Food and Drug Administration [Internet] Type 2 diabetes mellitus: Evaluating the safety of new drugs for improving glycemic control guidance for industry. 2020. [cited 2020 Oct 8]. Available from: https://www.fda.gov/media/135936/downloadGoogle Scholar
Ikeda, M, Shimazawa, R. Challenges to hemoglobin A1c as a therapeutic target for type 2 diabetes mellitus. J Gen Fam Med. 2019;20:129–38. doi:10.1002/jgf2.244.Google ScholarPubMed
Alfieri, V, Myasoedova, VA, Vinci, MC, Rondinelli, M, Songia, P, Massaiu, I, et al. The role of glycemic variability in cardiovascular disorders. Int J Mol Sci. 2021;22. doi:10.3390/ijms22168393.CrossRefGoogle ScholarPubMed
Blumenthal, GM, Karuri, SW, Zhang, H, Zhang, L, Khozin, S, Kazandjian, D, et al. Overall response rate, progression-free survival, and overall survival with targeted and standard therapies in advanced non-small-cell lung cancer: US Food and Drug Administration trial-level and patient-level analyses. J Clin Oncol. 2015;33:1008–14. doi:10.1200/JCO.2014.59.0489.CrossRefGoogle ScholarPubMed
Buyse, M, Burzykowski, T, Carroll, K, Michiels, S, Sargent, DJ, Miller, LL, et al. Progression-free survival is a surrogate for survival in advanced colorectal cancer. J Clin Oncol. 2007;25:5218–24. doi:10.1200/JCO.2007.11.8836.CrossRefGoogle ScholarPubMed
Johnson, KR, Liauw, W, Lassere, MND. Evaluating surrogacy metrics and investigating approval decisions of progression-free survival (PFS) in metastatic renal cell cancer: A systematic review. Ann Oncol. 2015;26:485–96. doi:10.1093/annonc/mdu267.CrossRefGoogle ScholarPubMed
Supplementary material: File

Rivera et al. supplementary material

Rivera et al. supplementary material

Download Rivera et al. supplementary material(File)
File 463.6 KB