Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T07:18:07.231Z Has data issue: false hasContentIssue false

Variation effect of plane-wave incidence on multiconductor transmission lines

Published online by Cambridge University Press:  19 March 2015

Youssef Mejdoub*
Affiliation:
Department of Applied Physics, Laboratory of Electrical Systems and Telecommunications, Faculty of Sciences and Technology, Cadi Ayyad University, P.O. Box 549/40000, Marrakesh, Morocco
Hicham Rouijaa
Affiliation:
Department of Applied Physics, Faculty of Sciences and Technology of Settat, Hassan 1 University, P.O. Box 577, Km3 Casablanca Road, Settat, Morocco
Abdelilah Ghammaz
Affiliation:
Department of Applied Physics, Laboratory of Electrical Systems and Telecommunications, Faculty of Sciences and Technology, Cadi Ayyad University, P.O. Box 549/40000, Marrakesh, Morocco
*
Corresponding author: Y. Mejdoub Email: [email protected]

Abstract

This paper addresses the study of the variation effects of incident plane wave on a multiconductor transmission line (MTL), using a coupling circuit model of MTL line with plane wave based on the method of characteristics (Branin method). This model is valid in the time and frequency domains. It has also an advantage of not presupposing the conditions of the charges applied to its ends, which allows it to be easily inserted in circuit simulators, such as SPICE, SABER, and ESACAP. We confirm the validity of this model by comparing our simulation results under ESACAP with other results, and we discuss the variation effects of the incident plane wave on an MTL line.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Paul, C.R.: Analysis of Multiconductor Transmission Lines, Wiley, New York, 1994.Google Scholar
[2] Roden, J.A.; Paul, C.R.; Smith, W.T.; Gedney, S.D.: Finite-difference time-domain analysis of Lossy transmission lines. IEEE Trans. EMC, 38 (1996), 1524.Google Scholar
[3] Mejdoub, Y.; Rouijaa, H.; Ghammaz, A.: Transient analysis of lossy multiconductor transmission lines model based by the characteristics method. Int. J. Eng. Technol., 3 (1) (2011), 4753.Google Scholar
[4] Mejdoub, Y.; Saih, M.; Rouijaa, H.; Ghammaz, A.: Frequency-domain modeling and simulation of coupled lossy multiconductor transmission lines. Int. J. Comput. Sci. Issue, 10 (5) (2013), 128133.Google Scholar
[5] Schlagenhaufer, F.; Singer, H.: Investigations of field-excited multiconductor lines with nonlinear loads, in IEEE Int. Symp. on Electromagnetic Compatibility, 1990.Google Scholar
[6] Krehl, P.; Novender, W.R.: A graphical and analytical method to determine the transient response for an ideal transmission line, loaded by a time-varying impedance. IEEE Trans. Plasma Sci., 13 (2) (1985), 109114.CrossRefGoogle Scholar
[7] Rajhi, A.; Ghnimi, S.; Gharssallah, A.: Transient analysis of the EM field coupling to multi-conductor transmission lines using the NILT method. Int. J. Microw. Wireless Technol., 4 (4) (2012), 463472.CrossRefGoogle Scholar
[8] Paul, C.R.: A SPICE model for multiconductor transmission lines excited by an incident electromagnetic field. IEEE Trans. EMC, 36 (4), (1994), 342354.Google Scholar
[9] Bergeron, L.: Water Hammer in Hydraulics and Wave Surges in Electricity, Wiley, New York, 1961.Google Scholar
[10] Meteger, G.; Vabre, J.P.: Electronique des Impulsions, Tome II: Circuits à Constantes Réparties, Masson et Cie, Paris, 1966.Google Scholar
[11] Taylor, C.D.; Satterwhite, R.S.; Harrison, C.W.: The response of a terminated two-wire transmission line exited by a nonuniform electromagnetic field. IEEE Trans. Antennas Propag., 13 (1965), 987989.CrossRefGoogle Scholar
[12] Agrawal, A.K.; Price, H.J.; Gurbaxani, S.H.: Transient response of multiconductor transmission lines excited by a non-uniform electromagnetic field. IEEE Trans EMC, 22 (4) (1980), 119129.Google Scholar
[13] Rachidi, F.: Formulation of filed to transmission line coupling equation in terms of magnetic excitation field. IEEE Trans EMC., 35 (3) (1993), 404407.Google Scholar
[14] Branin, F.H. Jr: Transient analysis of lossless transmission lines. Proc IEEE, 55 (1967), 20122013.CrossRefGoogle Scholar
[15] Mejdoub, Y.; Rouijaa, H.; Ghammaz, A.: Couplage d'une Ligne de Transmission Multiconducteur avec une Onde Plane: Model Circuit., in 3ème Congrès Méditerranéen des Télécommunications et Exposition, 2010.Google Scholar
[16] Inzoli, L.; Rouijaa, H.: Aseris: Emcap2000 Esacap software. Applications Handbook and Users Manual, European Aeraunotic Defense and Space, 2001.Google Scholar
[17] Rouijaa, H.: Modélisation des Lignes de Transmission Multiconducteurs par La Méthode des Approximantes de Pade: Approche Circuit. PhD Génie Electrique, Université de Droit d'Economie et des Sciences d'Aix-Marseille (Aix-Marseille III), Mai 2004.Google Scholar
[18] Kane, M.: Modèles analytiques originaux pour la détermination des paramètres linéiques des lignes et câbles multifilaires parcourus par des signaux large bande. PhD Génie Electrique, École Doctorale de Lyon des Sciences pour L'ingénieur:Electronique; Electrotechnique; Automatique, 1994.Google Scholar