Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T13:15:42.987Z Has data issue: false hasContentIssue false

Theoretical study of liquid crystal dielectric-loaded plasmonic waveguide

Published online by Cambridge University Press:  07 December 2015

Hamed Armand
Affiliation:
Department of Electrical and Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran.
M. Dashti Ardakani*
Affiliation:
Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran. Phone: +98 913 359 4943
*
Corresponding author: M. Dashti Ardakani Email: [email protected]

Abstract

A fully two-dimensional theoretical study of the electromagnetic wave propagation through Metal–Liquid Crystal–Metal (M–LC–M) waveguide structure is presented. Dispersion relations corresponding to both symmetric and antisymmetric-coupled surface plasmons polaritons modes in M–LC–M structure are derived and numerically solved. The effects of LC tilt angles on the effective refractive index and propagation length are proposed. The analytical method is in good agreement with those obtained from finite-difference time-domain simulation. The obtained analytic formula can be used as an efficient element in designing tunable ultrahigh nanoscale integrated plasmonic devices.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gu, J. et al. : An active hybrid plasmonic metamaterial. Opt. Mater. Express, 2 (2012), 3137.CrossRefGoogle Scholar
[2] Gao, L.; Tang, L.; Hu, F.; Guo, R.; Wang, X.; Zhou, Zh.: Active metal strip hybrid plasmonic waveguide with low critical material gain. Opt. Express, 20 (2012), 1148711495.CrossRefGoogle ScholarPubMed
[3] Kossyrev, P.A. et al. : electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Lett., 5 (2005), 19781981.CrossRefGoogle ScholarPubMed
[4] Weiss, K.; Woll, C.; Johannsmann, D.: Orientation of thin liquid crystal films on buffed polyimide alignment layers: a near-edge x-ray absorption fine structure investigation. J. Chem. Phys., 113 (2000), 1129711305.CrossRefGoogle Scholar
[5] Dorjgotov, E.A.; Bhowmik, A.K.; Bos, P.J.: High tunability mixed order photonic crystal. Appl. Phys. Lett., 96 (2010), 163507.CrossRefGoogle Scholar
[6] Li, X.; Tohyama, T.; Miyashita, T.; Uchida, T.: Order parameters of the liquid crystal interface layer at a rubbed polymer surface. J. Appl. Phys., 96 (2004), 19531958.Google Scholar
[7] Werner, D.H.; Kwon, D.-H.; Khoo, I.-C.; Kildishev, A.V.; Shalaev, V.M.: Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices. Opt. Express, 15 (2007), 33423347.CrossRefGoogle ScholarPubMed
[8] BahramiPanah, M.; Mirtaheri, S.A.; Abrishamian, M.S.: Electrical beam steering with metal-anisotropic-metal structure. Opt. Lett., 37 (2012), 13.CrossRefGoogle ScholarPubMed
[9] Tasolamprou, A.C.; Zografopoulos, D.C.; Kriezis, E.E.: Liquid crystal-based dielectric loaded surface plasmon polariton optical switches. J. Appl. Phys., 110 (2011), 93102-9.CrossRefGoogle Scholar
[10] Dridi, M.; Vial, A.: FDTD modeling of gold nanoparticles in a nematic liquid crystal: quantitative and qualitative analysis of the spectral tunability. J. Phys. Chem. C, 114 (2010), 95419545.CrossRefGoogle Scholar
[11] Krokhin, A.A.; Neogi, A.; McNeil, D.: Long-range propagation of surface plasmons in a thin metallic film deposited on an anisotropic photonic crystal. Phys. Rev. B, 75 (2007), 235420-5.CrossRefGoogle Scholar
[12] Smolyaninov, I.I.: Two-dimensional plasmonic metamaterials. Appl. Phys. A, 87 (2007), 227234.CrossRefGoogle Scholar
[13] Jacob, J.; Babu, A.; Mathew, G.; Mathew, V.: Propagation of surface plasmon polaritons in anisotropic MIM and IMI structures. Superlattices Microstruct., 44 (2008), 282290.CrossRefGoogle Scholar
[14] Rukhlenko, I.D.; Premaratne, M.; Agrawal, G.P.: Guided plasmonic modes of anisotropic slot waveguides. Nanotechnology, 23 (2012), 18.CrossRefGoogle ScholarPubMed
[15] Bahramipanah, M.; Abrishamian, M.S.; Mirtaheri, S.A.: Beam manipulating by metal–anisotropic–metal plasmonic lens. J. Opt., 14 (2012), 105001-7.CrossRefGoogle Scholar
[16] Maier, S.A.: Plasmonics Fundamentals and Applications, Springer, New York, 2007.CrossRefGoogle Scholar
[17] Bahramipanah, M.; Abrishamian, M.S.; Mirtaheri, S.A.: Tuning the focal point of a plasmonic lens by nematic liquid crystal. J. Eur. Opt. Soc. Rapid Publ., 7 (2012), 12053-7.CrossRefGoogle Scholar
[18] Ishii, S.; Kildishev, A.V.; Shalaev, V.M.; Drachev, V.P.: Controlling the wave focal structure of metallic nanoslit lenses with liquid crystals. Laser Phys. Lett., 8 (2011), 828832.CrossRefGoogle Scholar
[19] Dridi, M.; Vial, A.: FDTD modelling of gold nanoparticle pairs in a nematic liquid crystal cell. J. Phys. D: Appl. Phys., 43 (2010), 95419545.CrossRefGoogle Scholar
[20] Liu, C.Y.; Chen, L.W.: Tunable photonic-crystal waveguide Mach–Zehnder interferometer achieved by nematic liquid-crystal phase modulation. Opt. Express, 12 (2004), 26162624.CrossRefGoogle ScholarPubMed
[21] Chu, Y.; Schonbrun, E.; Yang, T.; Crozier, K.B.: Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett., 93 (2008), 181108-3.CrossRefGoogle Scholar
[22] Guo, S.H.; Heetderks, J.J.; Kan, H.C.; Phaneuf, R.J.: Enhanced fluorescence and near-field intensity for Ag nanowire/nanocolumn arrays: evidence for the role of surface plasmon standing waves. Opt. Express, 16 (2008), 1841718425.CrossRefGoogle ScholarPubMed
[23] Seo, M.A. et al. : Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nat. Photonics, 3 (2009), 152156.CrossRefGoogle Scholar
[24] Balci, S.; Karabiyik, M.; Kocabas, A.; Kocabas, C.; Aydinli, A.: Coupled plasmonic cavities on moire surfaces. Plasmonics, 5 (2010), 429436.CrossRefGoogle Scholar
[25] Kim, D.S.; Park, H.R.; Seo, M.A.: Nanogap device for field enhancement and a system for nanoparticle detection using the same. United States Patent, Publ. No. US 2011/0220799, 2011.Google Scholar