Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-22T08:58:44.001Z Has data issue: false hasContentIssue false

Terahertz antenna technology for imaging applications: a technical review

Published online by Cambridge University Press:  21 February 2018

Isha Malhotra
Affiliation:
Department of Electronics and Communication Engineering, Jaypee University of Information Technology, Solan-173 234, India
Kumud Ranjan Jha
Affiliation:
School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir-182320, India
Ghanshyam Singh*
Affiliation:
Department of Electronics and Communication Engineering, Jaypee University of Information Technology, Solan-173 234, India
*
Author for correspondence: G. Singh, E-mail: [email protected]

Abstract

The terahertz (THz) regime of the electromagnetic spectrum is rich with the emerging possibilities in imaging applications with unique characteristics to screening for weapons, explosives and bio-hazards, imaging of concealed objects, water content, and skin, and these advantages can be harnessed by using the effective THz sources and detectors. In THz imaging systems, the pulsed THz sources and detectors find unique applications and thus we have emphasized on re-visiting these kinds of systems. Several novel imaging techniques which exploit the distinctive properties of the THz systems have been presented. Moreover, the THz antenna is one of the most important components of a THz imaging system as it plays a significant role in both impedance matching and power source. Therefore, the recent developments in THz antenna design for imaging applications are reviewed and the potential challenges of such THz systems are investigated. The photoconductive antennas form the basis of many THz imaging and spectroscopy systems and finds promising applications in various scientific fields. However, for the imaging applications, there is a requirement of planar and compact THz antenna sources with on-chip fabrication and high directivity in order to achieve large depth-of-field for better image resolution. Therefore, the key modalities of improving photoconductive dipole antennas performance are identified for imaging applications. Also, the ways to improve the directivity of the photoconductive dipole antenna are discussed. The main purpose of this review is to provide an assortment of all relevant literature to bring researchers up-to-date on the current state-of-the-art and potential challenges of THz antenna technology for imaging applications.

Type
Tutorial and Review Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Zhang, XC (2002) THz wave imaging: Horizons and hurdles. Physics in Medicine and Biology 47(21), 36673677.CrossRefGoogle ScholarPubMed
2.Jansen, C, Wietzke, S, Peters, O, Scheller, M, Vieweg, N and Salhi, M (2010) Terahertz imaging: applications and perspectives. Applied Optics 49, E48E57.CrossRefGoogle Scholar
3.Zhang, XC, Beigang, R and Tanaka, K (2009) Introduction: THz wave photonics. Journal of the Optical Society of America B 26(9), TW1TW1.CrossRefGoogle Scholar
4.Li, L, Chen, L, Zhu, J, Freeman, J, Dean, P, Valavanis, A, Davies, AG and Linfield, EH (2014) Terahertz quantum cascade lasers with >1 W output powers. IET Electronics. Letters 50(4) 309311.CrossRefGoogle Scholar
5.Liang, G, Liu, T and Wang, QJ (2017) Recent developments of terahertz quantum cascade lasers. IEEE Journals of Selected Topics in Quantum Electronics 23(4), 118.Google Scholar
6.Wang, X, Shen, C, Jiang, T, Zhan, Z, Deng, Q, Li, W, Wu, W, Yang, N, Chu, W and Duan, S (2016) High-power terahertz quantum cascade lasers with ~0.23W in continuous wave mode. AIP Advances 6(7), 075210/1075210/15.Google Scholar
7.Dhillon, SS, Vitiello, MS, Linfield, EH, Davies, AG, Hoffmann, MC, Booske, J, Paoloni, C, Gensch, M, Weightman, P, Williams, GP, Camus, EC, Cumming, DRS, Simoens, F, Carranza, IE, Grant, J, Lucyszyn, S, Gonokami, MK, Konishi, K, Koch, M, Schmuttenmaer, CA, Cocker, TL, Huber, R, Markelz, AG, Taylor, ZD, Wallace, VP, Zeitler, JA, Sibik, J, Korter, TM, Ellison, B, Rea, S, Goldsmith, P, Cooper, KB, Appleby, R, Pardo, D, Huggard, PG, Krozer, V, Shams, H, Fice, M, Renaud, C, Seeds, A, Stohr, A, Naftaly, M, Ridler, N, Clarke, R, Cunningham, JE and Johnston, MB (2017) The 2017 terahertz science and technology roadmap. Journal of Physics D: Applied Physics 50, 043001/1043001/49.CrossRefGoogle Scholar
8.Yu, C, Fan, S, Sun, Y and Pickwell-MacPherson, E (2012) The potential of terahertz imaging for cancer diagnosis: A review of investigations to date. Quantitative Imaging in Medicine and Surgery 2, 3345.Google ScholarPubMed
9.Amenabar, I, Lopez, F and Mendikute, A (2013) In introductory review to THz non-destructive testing of composite mater. Journal of Infrared, Millimeter, and Terahertz Waves 34, 152169.CrossRefGoogle Scholar
10.Liu, J, Fan, W-H, Chen, X and Xie, J (2016) Identification of high explosive RDX using terahertz imaging and spectral fingerprints. Journal of Physics: Conference Series 680(1), 19.Google Scholar
11.Skvortsov, LA (2014) Standoff detection of hidden explosives and cold and fire arms by terahertz time-domain spectroscopy and active spectral imaging (Review). Journal of Applied Spectroscopy 81(5), 725749.CrossRefGoogle Scholar
12.Yakovlev, EV, Zaytsev, KI, Dolganova, IN and Yurchenko, SO (2015) Non-destructive evaluation of polymer composite materials at the manufacturing stage using terahertz pulsed spectroscopy. IEEE Transactions on Terahertz Science and Technology 5, 810816.CrossRefGoogle Scholar
13.Federici, J and Moeller, L (2010) Review of terahertz and subterahertz wireless communications. Journal of Applied Physics 107(11), 111101/1111101/22.CrossRefGoogle Scholar
14.Petkie, DT, Casto, C, De Lucia, FC, Murrill, SR, Redman, B, Espinola, RL, Franck, CC, Jacobs, EL, Griffin, ST, Halford, CE, Reynolds, J, O’ Brien, S and Tofsted, D (2008) Active and passive imaging in the THz spectral region: Phenomenology, dynamic range, modes, and illumination. Optical Society of America B 25(9), 15231531.CrossRefGoogle Scholar
15.Mickan, SP and Zhang, XC (2003) T-Ray sensing and imaging. International Journal of High Speed Electronics and Systems 13(2), 601676.CrossRefGoogle Scholar
16.Woodward, RM, Cole, BE, Wallace, VP, Pye, RJ, Arnone, DD, Linfield, EH and Pepper, M (2002) THz pulse imaging in reflection geometry of human skin cancer and skin tissue. Physics in Medicine and Biology 47(21), 38533863.CrossRefGoogle Scholar
17.Rothman, LS (2010) The evolution and impact of the HITRAN molecular spectroscopic database. Journal of Quantitative Spectroscopy Radiative Transfer 111(11), 15651567.CrossRefGoogle Scholar
18.Han, PY, Tani, M, Usami, M, Kono, S, Kersting, R and Zhang, XC (2001) A direct comparison between THz time-domain spectroscopy and far-infrared Fourier transform spectroscopy. Journal of Applied Physics 89(4), 23572359.CrossRefGoogle Scholar
19.Mickan, S, Abbott, D, Munch, J, Zhang, XC and Doorn, TV (2000) Analysis of system trade-offs for THz imaging. Microelectronics Journal 31(7), 503514.CrossRefGoogle Scholar
20.Trichopoulos, GC, Mosbacker, HL, Burdette, D and Sertel, K (2013) A broadband focal plane array camera for real-time THz imaging applications. IEEE Transactions on Antenna and Propagation 61(4), 17331740.CrossRefGoogle Scholar
21.Karpowicz, N, Zhong, H, Xu, J, Lin, K-I, Hwang, J-S and Zhang, X (2005) Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging. Semiconductor Science and Technology 20(7), S293S299.CrossRefGoogle Scholar
22.Robin, T, Bouye, C and Cochard, J (2014) Terahertz applications: trends and challenges. Proc. of SPIE, International Society for Optics and Photonics 8985, 898512/1898512/6.Google Scholar
23.Sy, MY, Huang, SHS, Wang, YWY, Ahuja, AT, Zhang, YZY and Pickwell-Macpherson, E. (2010) Investigating the role of water content on THz properties of rat liver cirrhosis, in Proc. 35th International Conference on Infrared, Millimeter and The THz Waves, Rome, 5–10 September 2010, 1–2.Google Scholar
24.Cooper, KB, Dengler, RJ, Lombart, N, Bryllert, T, Chattopadhyay, G, Schlecht, E, Gill, J, Lee, C, Skalare, A, Mehdi, I and Siegel, PH (2008) Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar. IEEE Transactions on Microwave Theory and Techniques 56(12), 27712778.CrossRefGoogle Scholar
25.Gowen, AA, O'Sullivan, C and O'Donnell, CP (2012) Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control. Trends in Food Science & Technology 25(1), 4046.CrossRefGoogle Scholar
26.Rahani, EK, Kundu, T, Wu, Z and Xin, H (2011) Mechanical damage detection in polymer tiles by THz radiation. IEEE Sensors Journal 11(8), 17201725.CrossRefGoogle Scholar
27.Mousavi, P, Haran, F, Jez, D, Santosa, F and Dodge, JS (2009) Simultaneous composition and thickness measurement of paper using THz time domain spectroscopy. Applied Optics 48(33), 65416546.CrossRefGoogle Scholar
28.Yasui, T, Yasuda, T, Sawanaka, K and Araki, T (2005) THz paint meter for noncontact monitoring of thickness and drying progress in paint film. Applied Optics 44(32), 68496856.CrossRefGoogle Scholar
29.Wietzke, S, Jordens, C, Krumbholz, N, Baudrit, B, Bastian, M and Koch, M (2007) THz imaging: A new non-destructive technique for the quality control of plastic weld joints. Journal of the European Optical Society – Rapid Publications 2, 07013 1–5.Google Scholar
30.Nguema, E, Vigneras, V, Miane, JL and Mounaix, P (2008) Dielectric properties of conducting polyaniline films by THz time-domain spectroscopy. European Polymer Journal 44(1), 124129.CrossRefGoogle Scholar
31.Banerjee, D, Spiegel, WV, Thomson, MD, Schabel, S and Roskos, HG (2008) Diagnosing water content in paper by THz radiation. Optics Express 16(12), 90609066.CrossRefGoogle Scholar
32.Park, JW, Im, KH, Hsu, DK, Jung, JA and Yang, IY (2012) THz spectroscopy approach of the fiber orientation influence on CFRP composite solid laminates. Journal of Mechanical Science and Technology 26(7), 20512054.CrossRefGoogle Scholar
33.Kawase, K, Shibuya, T, Hayashi, S and Suizu, K (2010) THz imaging techniques for non-destructive inspections. THz Electronic and Optoelectronic Components and Systems 11(7–8), 510518.Google Scholar
34.Han, ST, Park, WK, Ahn, YH, Lee, WJ and Chun, HS (2012) Development of a compact sub- THz gyrotron and its application to T-ray real-time imaging for food inspection, in Proc. International Conference on Infrared, Millimeter, and THz Waves, Korea, 23- 28 September, 2012.Google Scholar
35.Jordens, C and Koch, M (2008) Detection of foreign bodies in chocolate with pulsed THz spectroscopy. Optical Engineering 47(3), 037003/1–5.CrossRefGoogle Scholar
36.Hor, YL, Federici, JF and Wample, RL (2008) Nondestructive evaluation of cork enclosures using THz/millimeter wave spectroscopy and imaging. Applied Optics 47(1), 7278.CrossRefGoogle ScholarPubMed
37.Hoshina, H, Sasaki, Y, Hayashi, A, Otani, C and Kawase, K (2009) Non-invasive mail inspection system with THz radiation. Applied Spectroscopy 63(1), 8186.CrossRefGoogle Scholar
38.Kemp, MC (2011) Explosives detection by THz spectroscopy: a bridge too far?. IEEE Transactions on Terahertz Science and Technology 1(1), 282292.CrossRefGoogle Scholar
39.Zhong, H, Sanchez, AR and Zhang, XC (2007) Standoff sensing and imaging of explosive related chemical and bio-chemical materials using THz-TDS. International Journal of High Speed Electronics and Systems 17(2), 239249.CrossRefGoogle Scholar
40.Kurmi, Y and Chaurasia, V (2015) Hidden explosive detection systems for vehicle. International Journal of Computer Applications 130(10), 1619.CrossRefGoogle Scholar
41.Lu, M, Shen, J, Li, N, Zhang, Y, Zhang, C, Liang, L and Xu, X (2006) Detection and identification of illicit drugs using THz imaging. Journal of Applied Physics 100(10), 103104.CrossRefGoogle Scholar
42.Federici, JF, Schulkin, B, Huang, F, Gary, D, Barat, R, Oliveira, F and Zimdars, D (2005) THz imaging and sensing for security applications-explosives, weapons and drugs. Semiconductor Science and Technology 20(7), S266S280.CrossRefGoogle Scholar
43.Wilmink, GJ and Grundt, JE (2011) Invited review article: current state of research on biological effects of terahertz radiation. Journal of Infrared, Millimeter and Terahertz Waves 32(10), 10741122.CrossRefGoogle Scholar
44.Valkenburg, G and Ploeg, IV (2015) Materialities between security and privacy: a constructivist account of airport security scanners. Special Issue on Questioning Security Devices: Performativity, Resistance, Politics, Security Dialogue 46(4), 326344.Google Scholar
45.Heinz, E, May, T, Born, D, Zieger, G, Anders, S, Thorwirth, G, Zakosarenko, V, Schubert, M, Krause, T, Schulz, M, Bauer, F and Meyer, HG (2010) Passive submillimeter-wave stand-off video camera for security applications. Journal of Infrared, Millimeter and Terahertz waves 31(11), 13551369.CrossRefGoogle Scholar
46.Jepsen, PU, Moller, U and Merbold, H (2007) Investigation of aqueous alcohol and sugar solutions with reflection THz time-domain spectroscopy. Optics Express 15(22), 1471714737.CrossRefGoogle Scholar
47.Son, JH (ed.) (2014) Terahertz Biomedical Science and Technology. Boca Raton, FL: Taylor & Francis Group.CrossRefGoogle Scholar
48.Wilmink, GJ, Rivest, BD, Roth, CC, Ibey, BL, Payne, JA, Cundin, LX, Grundt, JE, Peralta, X, Mixon, DG and Roach, WP (2011) In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation. Laser in Surgery and Medicine 43(2), 152163.CrossRefGoogle ScholarPubMed
49.Son, JH (2009) THz electromagnetic interactions with biological matter and their applications. Journal of Applied Physics 105(10), 102033/1–10.CrossRefGoogle Scholar
50.Bowman, TC, El- Shenawee, M and Campbell, LK (2015) THz imaging of excised breast tumor tissue on paraffin sections. IEEE Transactions on Antennas and Propagation 63(5), 20882097.CrossRefGoogle Scholar
51.Taylor, ZD, Singh, RS, Bennett, DB, Tewari, P, Kealey, CP, Bajwa, N, Culjat, MO, Stojadinovic, A, Lee, H, Hubschman, J-P, Brown, ER and Grundfest, WS (2011) THz medical imaging: in vivo hydration sensing. IEEE Transactions on Terahertz Science and Technology 1(1), 201219.CrossRefGoogle ScholarPubMed
52.Woodward, RM, Wallace, VP, Arnone, DD, Linfield, EH and Pepper, M (2003) Terahertz pulsed imaging of skin cancer in the time and frequency domain. Journal of Biological Physics 29(2), 257259.CrossRefGoogle ScholarPubMed
53.Zhang, CH, Zhao, GF, Jin, BB, Hou, YY, Chen, J and Wu, PH (2012) THz Imaging on subcutaneous tissues and liver inflamed by liver cancer cells. Terahertz Science and Technology 5(3), 114123.Google Scholar
54.Oh, SJ, Huh, Y-M, SuckSuh, J, Choi, J, Haam, S and Son, J-H (2012) Cancer diagnosis by THz molecular imaging techniques. Journal of Infrared, Millimeter and Terahertz Waves 33(1), 7481.CrossRefGoogle Scholar
55.Berry, E, Fitzgerald, AJ, Zinoviev, NN, Walker, GC, Homer-Vanniasinkam, S, Sudworth, CD, Miles, RE, Chamberlain, M and Smith, MA (2003) Optical properties of tissue measured using THz-pulsed imaging. Proceedings of SPIE 5030, 459470.CrossRefGoogle Scholar
56.Charron, DM, Ajito, K, Kim, JY and Ueno, Y (2013) Chemical mapping of pharmaceutical cocrystals using THz spectroscopic imaging. American Chemical Society 85, 19801984.Google ScholarPubMed
57.Shen, YC (2011) THz pulsed spectroscopy and imaging for pharmaceutical applications: a review. International Journal of Pharmaceutics 417(1), 4860.CrossRefGoogle Scholar
58.Shen, Y-C and Taday, PF (2008) Development and application of THz pulsed imaging for non-destructive inspection of pharmaceutical tablet. IEEE Journal of Selected Topics in Quantum Electronics 14(2), 407415.CrossRefGoogle Scholar
59.Maurer, L and Leuenberger, H (2009) THz pulsed imaging and near infrared imaging to monitor the coating process of pharmaceutical tablets. International Journal of Pharmaceutics 370(1), 816.CrossRefGoogle Scholar
60.Guillet, JP, Recur, B, Frederique, L, Bousquet, B, Canioni, L, Honninger, IM, Desbarats, P and Mounaix, P (2014) Review of terahertz tomography techniques. Journal of Infrared, Millimeter and Terahertz Waves 35(4), 382411.CrossRefGoogle Scholar
61.Zhong, H, Xu, JZ, Xie, X, Yuan, T, Reightler, R, Madaras, E and Zhang, XC (2005) Non-destructive defect identification with THz time-of-flight tomography. IEEE Sensors Journal 5(2), 203208.CrossRefGoogle Scholar
62.Zhong, H, Karpowicz, N, Xu, J, Deng, Y, Ussery, W, Shur, M and Zhang, XC (2004) Detection of space shuttle insulation foam defects by using a 0.2 THz Gunn diode oscillator and pyro-electric detector. Frontiers in Optics, OSA Technical Digest Series, Optical Society of America, FTuG28.Google Scholar
63.Rahani, EK, Kundu, T, Wu, Z and Xin, H (2011) Heat induced detection by THz radiation. Journal of Infrared, Millimeter and Terahertz Waves 32, 848856.CrossRefGoogle Scholar
64.Cunningham, PD, Valdes, NN, Vallejo, FA, Hayden, LM, Polishak, B, Zhou, XH, Luo, J, Jen, AKY, Williams, JC and Twieg, RJ (2011) Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials. Journal of Physics 109(4), 043505/1–5.Google Scholar
65.Nagatsuma, T, Ducournau, G and Renaud, CC (2016) Advances in terahertz communications accelerated by photonics. Nature Photonics 10(6), 371379.CrossRefGoogle Scholar
66.Jha, KR and Singh, G (2013) THz planar antennas for future wireless communication: a technical review. Infrared Physics and Technology 60, 7180.CrossRefGoogle Scholar
67.Kurner, T and Priebe, S (2014) Towards THz communications - Status in research, standardization and regulation. Journal of Infrared, Millimeter, and Terahertz Waves 35(1), 5362.CrossRefGoogle Scholar
68.Chen, Z, Tan, ZY, Han, YJ, Zhang, R, Guo, XG, Li, H, Cao, JC and Liu, HC (2011) Wireless communication demonstration at 4.1 THz using quantum cascade laser and quantum well photodetector. Electronics Letters 47(17), 10021004.CrossRefGoogle Scholar
69.Ducournau, G, Szriftgiser, P, Pavanello, F, Peytavit, E, Zaknoune, M, Bacquet, D, Beck, A, Akalin, T and Lampin, JF (2015) THz communications using photonics and electronic devices: The race to data-rate. Journal of Infrared, Millimeter, and Terahertz Waves 36(2), 198220.CrossRefGoogle Scholar
70.Li, X, Dong, Z, Yu, J, Chi, N, Shao, Y and Chang, GK (2012) Fiber-wireless transmission system of 108 Gb/s data over 80 km fiber and 2 × 2 multiple-input multiple-output wireless links at 100 GHz W-band frequency. Optics Letters 37(24), 51065108.CrossRefGoogle Scholar
71.Song, HJ, Kim, JY, Ajito, K, Yaita, M and Kukutsu, N (2013) Fully integrated ASK receiver MMIC for THz communications at 300 GHz. IEEE Transactions on Terahertz Science and Technology 3(4), 445452.CrossRefGoogle Scholar
72.Antes, J, Boes, F, Meier, D, Messinger, T, Lewark, U, Tessmann, A, Wagner, S and Kallfass, I (2014) “Ultra-wideband single-balanced transmitter-MMIC for 300 GHz communication systems, in Proc. IEEE MTT-S International Microwave Symposium, Tampa, FL, 1–6 June 2014, 1–3.Google Scholar
73.Jansen, C, Priebe, S, Moller, C and Jacob, M (2011) Diffuse scattering from rough surfaces in THz communication channels. IEEE Transactions on Terahertz Science and Technology 1(2), 462472.CrossRefGoogle Scholar
74.Kallfass, I, Boes, F, Messinger, T, Antes, J, Inam, A, Lewark, U, Tessmann, A and Henneberger, R (2015) 64 Gbit/s transmission over 850 m fixed wireless link at 240 GHz carrier frequency. Journal of Infrared, Millimeter and Terahertz Waves 36(2), 221233.CrossRefGoogle Scholar
75.Hirata, A, Kosugi, T, Takahashi, H and Takeuchi, J. (2010) 5.8-km 10-Gbps data transmission over a 120-GHz-band wireless link, in Proc. IEEE International Conference on Wireless Information Technology and Systems, Honolulu, 28 August–3 September, 2010, 1–4.Google Scholar
76.Suen, JY (2016) Terabit-per-second satellite links: a path toward ubiquitous THz communication. Journal of Infrared, Millimeter and Terahertz Waves 37(7), 615639.CrossRefGoogle Scholar
77.Griinered, G. (1998) Millimeter and sub-millimeter wave spectroscopy of solids. Topics in Applied Physics 74, 169220, Springer Verlag, Berlin, Germany.Google Scholar
78.Smith, PR, Auston, DH and Nuss, MC (1988) “Subpicosecond photo-conducting dipole antennas. IEEE Journal of Quantum Electronics 24(2), 255260.CrossRefGoogle Scholar
79.Wu, Q and Zhang, XC (1995) Free-space electro-optic sampling of THz beams. Applied Physics Letters 67(24), 35233525.CrossRefGoogle Scholar
80.Grischkowsky, D, Keiding, S, van Exter, M and Fattinger, C (1990) Far-infrared time domain spectroscopy with THz beams of dielectrics and semiconductors. Journal of Optical Society of America B: Optical Physics 7(10), 20062015.CrossRefGoogle Scholar
81.Stone, MR, Naftaly, M, Miles, RE, Fletcher, JR and Steenson, DP (2004) Electrical and radiation characteristics of semilarge photoconductive THz emitters IEEE Transactions on Microwave Theory and Techniques 52(10), 24202429.CrossRefGoogle Scholar
82.Leitenstorfer, A, Hunsche, S, Shah, J and Nuss, MC (1999) Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory. Appl. Phys. Lett. 74(11), 15161518.CrossRefGoogle Scholar
83.Yano, R, Gotoh, H, Hirayama, Y, Miyashita, S, Kadoya, Y and Hattori, T (2005) Terahertz wave detection performance of photoconductive antennas: role of antenna structure and gate pulse intensity. Journal of Applied Physics 97(10), 103103 1–6.CrossRefGoogle Scholar
84.Nguyen, TK and Park, I (2014) Comparative study of stripline dipole antenna on semi infinite and lens substrates at terahertz frequency, in The 8th European Conference on Antennas and Propagation (EuCAP 2014), April 6–11, 2014, Netherlands, 2470–2474.CrossRefGoogle Scholar
85.Rudd, JV, Johnson, JL and Mittleman, DM (2000) Quadrupole radiation from THz dipole antennas. Optics Letters 25(20), 15561558.CrossRefGoogle Scholar
86.Rudd, JV, Johnson, JL and Mittleman, DM (2001) Cross-polarized angular emission patterns from lens-coupled THz antennas. Journal of Optical Society of America B: Optical Physics 18(10), 15241533.CrossRefGoogle Scholar
87.Giirtler, A, Winnewisser, C, Helm, H and Jepsen, PU (2000) THz pulse propagation in the near field and the far field. Journal of Optical Society of America A: Optics & Vision 17(1), 7483.CrossRefGoogle Scholar
88.Tani, M, Morikawa, O, Matsuura, S and Hangyo, M (2005) Generation of terahertz radiation by photomixing with dual-and multi-mode lasers. Semiconductor Science and Technology 20(5), S151S163.CrossRefGoogle Scholar
89.Stigwall, J and Wiberg, A (2007) Tunable terahertz signal generation by chirped pulse photomixing. IEEE Photonics Technology Letters 19(12), 931933.CrossRefGoogle Scholar
90.Duvillaret, L, Garet, F, Roux, JF and Coutaz, JL (2001) Analytical modeling and optimization of THz time-domain spectroscopy experiments using photo-switches as antennas. IEEE Journal of Selected Topics in Quantum Electronics 7(4), 615623.CrossRefGoogle Scholar
91.Bitzer, A, Ortner, A and Walther, M (2010) Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas. Applied Optics 49(19), E1E6.CrossRefGoogle ScholarPubMed
92.Lee, D-K, Kim, G, Kim, C, Jhon, YM, Kim, JH, Lee, T, Son, J-H and Seo, M (2016) Ultrasensitive detection of residual pesticides using THz near-field enhancement. IEEE Transactions on Terahertz Science and Technology 6(3), 389394.CrossRefGoogle Scholar
93.Fukunaga, K, Ogawa, Y, Hayashi, S and Hosako, I (2007) THz spectroscopy for art conservation. IEICE Electronics Express 4(8), 258263.CrossRefGoogle Scholar
94.Hosako, I and Fukunaga, K (2011) THz technology research at NICT from the source to industrial applications. Journal of Infrared, Millimeter and Terahertz Waves 32, 722731.CrossRefGoogle Scholar
95.Fukunaga, K, Hosako, I, Duling, IN III and Picollo, M. (2009) “THz imaging systems: a non- invasive technique for the analysis of paintings. Proceedings SPIE 7391, 73910D.CrossRefGoogle Scholar
96.Yan, H, Fan, WH and Zheng, ZP (2012) Investigation on terahertz vibrational modes of crystalline benzoic acid. Optics Communications 285(6), 15931598.CrossRefGoogle Scholar
97.Gao, W, Degang, X and Jianquan, Y (2011) Review of explosive detection using terahertz spectroscopy technique. Proc. International Conference on Electronics and Optoelectronics (ICEOE), 4, V422.Google Scholar
98.Dexheimer, SL (2008) THz spectroscopy: Principles and Applications. Boca Raton, FL: Taylor & Francis Group.Google Scholar
99.Oberto, L and Koch, M (2016) On the influence of delay line uncertainty in THz – time domain spectroscopy. Journal of Infrared, Millimeter and Terahertz Waves 37(6), 605613.Google Scholar
100.Jepsen, P and Fischer, B (2005) Dynamic range in THz time-domain transmission and reflection spectroscopy. Optics Letters 30(1), 2931.CrossRefGoogle ScholarPubMed
101.Baxter, JB and Schmuttenmaer, CA (2006) Conductivity of ZnO nanowires, nanoparticles and thin films using time-resolved THz spectroscopy. Journal of Physical Chemistry 110(50), 2522925239.CrossRefGoogle Scholar
102.Ponseca, CS, Savenije, TJ, Abdellah, M, Zheng, K, Yartsev, A, Pascher, T, Harlang, T, Chabera, P, Pullerits, T, Stepanov, A and Wolf, JP (2014) Organometal halide Perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond long balanced mobilities and slow recombination. Journal of the American Chemical Society 136(14), 51895192.CrossRefGoogle ScholarPubMed
103.Ker, M, Loffler, T, Thomson, MD, Dorner, R, Gimpel, H, Zrost, K, Ergler, T, Moshammer, R, Morgner, U, Ullrich, J and Roskos, HG (2006) Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nature Physics 2(5), 327331.Google Scholar
104.Hu, BB and Nuss, MC (1995) Imaging with THz waves. Optics Letters 20(16), 17161718.CrossRefGoogle Scholar
105.Woolard, DL, Jensen, JO and Hwu, RJ (eds) (2007) Terahertz Science and Technology for Military and Security Applications. Vol. 46. Singapore: World Scientific Publishing Company Incorporated.CrossRefGoogle Scholar
106.Zeitler, JA and Gladden, LF (2009) In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms. European Journal of Pharmaceutics and Biopharmaceutics 71(1), 222.CrossRefGoogle ScholarPubMed
107.Hishida, M and Tanaka, K (2011) Long-range hydration effect of lipid membrane studied by THz time-domain spectroscopy. Physical Review Letters 106(15), 158102.CrossRefGoogle Scholar
108.Fischer, BM, Walther, M and Jepsen, PU (2002) Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Physics in Medicine and Biology 47(21), 3807.CrossRefGoogle ScholarPubMed
109.Fischer, BM, Hoffmann, M, Helm, H, Wilk, R, Rutz, F, Ostmann, TK, Koch, M and Jepsen, PU (2005) Terahertz time-domain spectroscopy and imaging of artificial RNA. Optics Express 13(14), 52055215.CrossRefGoogle ScholarPubMed
110.Reuter, M, Vieweg, N, Koch, M and Dierking, I (2016) THz spectroscopy across liquid crystalline phase transitions. Applied Physics Letters 108(5), 051908/1–4.CrossRefGoogle Scholar
111.Beard, MC, Turner, GM and Schmuttenmaer, CA (2001) Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved THz spectroscopy. Journal of Applied Physics 90(12), 5915.CrossRefGoogle Scholar
112.Averitt, RD, Rodriguez, G, Siders, JLW, Trugman, SA and Taylor, AJ (2000) Conductivity artifacts in optical-pump THz-probe measurements of YBa2Cu3O7. Journal of the Optical Society of America B 17(2), 327331.CrossRefGoogle Scholar
113.Hangyo, M, Tani, M and Nagashima, T (2005) THz time-domain spectroscopy of solids: a review. International Journal of Infrared and Millimeter Waves 26(12), 16611690.CrossRefGoogle Scholar
114.Choi, MK, Bettermann, A and Wiede, DWV (2004) Potential for detection of explosive and biological hazards with electronic THz systems. Philosophical Transactions of the Royal Society A 362, 337349.CrossRefGoogle Scholar
115.Shibuya, T, Suzuki, T, Suizu, K and Kawase, K (2011) Non-destructive characterization of Soot in Exhaust filters using Millimeter-wave Imaging. Journal of Infrared, Millimeter and Terahertz Waves 32(5), 716721.CrossRefGoogle Scholar
116.Sheen, DM, Hall, TE, Severtsen, RH, McMakin, DL, Hatchell, BK and Valdez, PLJ (2010) Standoff concealed weapon detection using a 350-GHz radar imaging system. Proceedings SPIE 7670, Passive Millimeter-Wave Imaging Technology XIII, vol. 7670, pp. 767008/1–12.CrossRefGoogle Scholar
117.Kowalski, M and Kastek, M (2016) Comparative studies of passive imaging in terahertz and mid-wavelength infrared ranges for object detection. IEEE Transactions on Information Forensics and Security 11(9), 20282035.CrossRefGoogle Scholar
118.Grossman, EN, Gordon, J, Novotny, D and Chamberlin, R (2014) Terahertz active and passive imaging, in Proc. 8th IEEE European Conference on Antenna and Propagation (EuCAP), Netherland, 6-11 April, 2014.Google Scholar
119.Patrick, MA, Holt, JA, Joye, CD and DeLucia, FC (2012) Elimination of speckle and target orientation requirements in millimeter-wave active imaging by modulated multimode mixing illumination. Journal of Optical Society of America A 29, 2643.CrossRefGoogle ScholarPubMed
120.Deal, W, Mei, XB, Leong, MKH, Radisic, V, Sarkozy, S and Lai, R (2011) THz monolithic integrated circuits using InP high electron mobility transistors. IEEE Transactions on Terahertz Science and Technology 1, 2532.CrossRefGoogle Scholar
121.Radisic, V, Leong, MKH, Mei, X, Sarkozy, S, Yoshida, W and Deal, WR (2012) Power amplification at 0.65 THz using InP HEMTs. IEEE Transactions on Microwave Theory and Technology 60, 724729.CrossRefGoogle Scholar
122.Friederich, F, Spiegel, WV, Bauer, M, Meng, F, Thomson, MD, Boppel, S, Lisauskas, A, Hils, B, Krozer, V, Keil, A, Loffler, T, Henneberger, R, Huhn, AK, Spickermann, G, Bolivar, PH and Roskos, HG (2011) THz active imaging systems with real-time capabilities. IEEE Transactions on Terahertz Science and Technology 1(1), 183200.CrossRefGoogle Scholar
123.Jarrahi, M (2015) Advanced photoconductive THz optoelectronics based on nano-antennas and nano-plasmonic light concentrators. IEEE Transactions on Terahertz Science and Technology 5(3), 391397.CrossRefGoogle Scholar
124.Yang, SH, Watts, R, Li, X, Wang, N, Cojocaru, V, Gorman, JO, Barry, LP and Jarrahi, M (2015) Tunable THz wave generation through a bimodal laser diode and plasmonic photomixer. Optics Express 23(24), 3120631215.CrossRefGoogle ScholarPubMed
125.Berry, CW, Wang, N, Hashoni, MR, Unlu, M and Jarrahi, M (2013) Significant performance enhancement in photoconductive THz optoelectronics by incorporating plasmonic contact electrodes. Nature Communications 4, 1622/1–10.CrossRefGoogle Scholar
126.Park, SG, Jin, KH, Yi, M, Ye, JC, Ahn, J and Jeong, KH (2012) Enhancement of THz pulse emission by optical nanoantenna. ACS Nano 6(3), 20262031.CrossRefGoogle ScholarPubMed
127.Zhu, N and Ziolkowski, RW (2013) Photoconductive THz antenna designs with high radiation efficiency, high directivity and high aperture efficiency. IEEE Transactions on Terahertz Science and Technology 3(6), 721730.CrossRefGoogle Scholar
128.Nguyen, TK, Han, H and Park, I (2011) Numerical study of a full-wavelength dipole antenna on a GaAs membrane structure at THz frequency. Journal of Infrared, Millimeter and Terahertz Waves 32(6), 763777.CrossRefGoogle Scholar
129.Maraghechi, P and Elezzabi, AY (2011) Experimental confirmation of design techniques for effective bow-tie antenna lengths at THz frequencies. Journal of Infrared, Millimeter and Terahertz Waves 32(7), 897901.CrossRefGoogle Scholar
130.Rutledge, DB, Neikirk, DP and Kasilingam, DP (1983) Infrared and Millimeter Waves. Academic, Orlando, Florida.Google Scholar
131.Frankel, MY, Gupta, S, Valdmanis, JA and Mourou, GA (1991) THz attenuation and dispersion characteristics of coplanar transmission lines. IEEE Transactions on Microwave Theory and Techniques 39(6), 910916.CrossRefGoogle Scholar
132.Han, K, Nguyen, TK, Park, I and Han, H (2010) THz Yagi-Uda antenna for high input resistance. Journal of Infrared, Millimeter and Terahertz Waves 31(4), 441454.Google Scholar
133.Beck, M, Schafer, H, Klatt, G, Demsar, J, Winnerl, S, Helm, M and Dekorsy, T (2010) Impulsive THz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna. Optics Express 18(9), 92519257.CrossRefGoogle Scholar
134.Singh, R, Rockstuhl, C, Menzel, C, Meyrath, TP, He, M, Giessen, H, Lederer, F, and Zhang, W (2009) Spiral-type THz antennas and the manifestation of the mushiake principle. Optics Express 17(12), 99719980.CrossRefGoogle Scholar
135.Tani, M, Hirota, Y, Que, CT, Tanaka, S, Hattori, R, Yamaguchi, M, Nishizawa, S and Hangyo, M (2006) Novel THz photoconductive antennas. International Journal of Infrared and Millimeter Waves 27(4), 531546.CrossRefGoogle Scholar
136.O'Hara, JF, Zide, JMO, Gossard, AC, Taylor, AJ and Averitt, RD (2006) Enhanced THz detection via ErAs: GaAs nano-island superlattices. Applied Physics Letter 88(25), 251119.CrossRefGoogle Scholar
137.Rivera-Lavado, A, García-Muñoz, L-E, Generalov, A, Lioubtchenko, D, Abdalmalak, K-A, Llorente-Romano, S, Segovia-Vargas, D and Räisänen, AV (2017) Design of a dielectric rod waveguide antenna array for millimeter waves. Journal of Infrared, Millimeter, and Terahertz Waves 38, 3346.CrossRefGoogle Scholar
138.Khiabani, N, Huang, Y, Shen, Y and Boyes, SJ (2013) Theoretical modeling of a terahertz photoconductive antenna in a pulsed system. IEEE Transaction on Antenna and Propagation 61(4), 15381546.CrossRefGoogle Scholar
139.Malhotra, I, Thakur, P, Pandit, S, Jha, KR and Singh, G (2017) Analytical framework of small-gap photoconductive dipole antenna using equivalent circuit model. Optical and Quantum Electronics 49, 334/133423.CrossRefGoogle Scholar
140.Malhotra, I, Jha, KR and Singh, G (2017) Analysis of highly directive photoconductive dipole antenna at terahertz frequency for sensing and imaging applications. Optics Communications 397, 129139.CrossRefGoogle Scholar
141.Burford, NM and El-Shenawee, MO (2017) Review of terahertz photoconductive antenna technology. Optical Engineering 56(1), 010901/1010901/20.CrossRefGoogle Scholar
142.Pradarutti, B, Müller, R, Freese, W, Matthäus, G, Riehemann, S, Notni, G, Nolte, S and Tünnermann, A (2008) Terahertz line detection by a microlens array coupled photoconductive antenna array. Optics Express 16, 1844318450.CrossRefGoogle ScholarPubMed
143.Hu, BB, Darrow, JT, Zhang, XC, Auston, DH and Smith, PR (1990) Optically steerable photoconducting antennas. Applied Physics Letters 56(10), 886888.CrossRefGoogle Scholar
144.Khiabani, N (2013) Modelling, design and characterization of terahertz photoconductive antennas. Ph.D. Thesis, University of Liverpool, Liverpool, UK.Google Scholar
145.Madeo, J, Jukam, N, Oustinov, D, Rosticher, M, Rungsawang, R, Tignon, J and Dhillon, SS (2010) Frequency tunable terahertz interdigitated photoconductive antennas. Electronics Letters 46(9), 611613.CrossRefGoogle Scholar
146.Hale, PJ, Madeo, J, Chin, C, Dhillon, SS, Mangeney, J, Tignon, J and Dani, KM (2014) 20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas. Optics Express 22(21), 2635826364.CrossRefGoogle ScholarPubMed
147.Park, S, Jin, K, Ye, J and Jeong, KH (2011) Nanoplasmonic photoconductive antenna for high power terahertz emission, in IEEE 16th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 5-9 June, 2011, Beijing, 2498–2501.CrossRefGoogle Scholar
148.Jooshesh, A, Smith, L, Masnadi-Shirazi, M, Bahrami-Yekta, V, Tiedje, T, Darcie, TE and Gordon, R (2014) Nanoplasmonics enhanced terahertz sources. Optics Express 22(23), 2799228001.CrossRefGoogle ScholarPubMed
149.Mitrofanov, O, Brener, I, Luk, TS and Reno, JL (2015) Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity. ACS Photonics 2(12), 17631768.CrossRefGoogle Scholar
150.Moon, K, Lee, IM, Shin, JH, Lee, ES, Kim, N, Lee, WH, Ko, H, Han, SP and Park, KH (2015) Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices. Scientific Reports 5, 13817/1–9.CrossRefGoogle ScholarPubMed
151.Lo, YH and Leonhardt, R (2008) Aspheric lenses for terahertz imaging. Optics Express 16, 1599115998.CrossRefGoogle ScholarPubMed
152.Huber, AJ, Keilmann, F, Wittborn, J, Aizpurua, J and Hillenbrand, R (2008) Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Letters 8, 37663770.CrossRefGoogle ScholarPubMed
153.Chernomyrdin, NV, Frolov, ME, Lebedev, SP, Reshetov, IV, Spektor, IE, Tolstoguzov, VL, Karasik, VE, Khorokhorov, AM, Koshelev, KI, Schadko, AO, Yurchenko, SO and Zaytsev, KI (2017) Wide-aperture aspherical lens for high-resolution terahertz imaging. Review of Scientific Instruments 88(1), 014703/ 1–6.CrossRefGoogle ScholarPubMed
154.Döhler, GH, Garcia-Muñoz, LE, Preu, S, Malzer, S, Bauerschmidt, S, Montero-de-Paz, J, Ugarte-Munoz, E, Rivera-Lavado, A, Gonzalez-Posadas, V and Segovia-Vargas, D (2013) From arrays of THz antennas to large-area emitters. IEEE Transactions on Terahertz Science and Technology 3, 532544.CrossRefGoogle Scholar
155.Singh, A and Prabhu, SS (2015) Microlensless interdigitated photoconductive terahertz emitters. Optics Express 23(2), 15291535.CrossRefGoogle ScholarPubMed
156.Camblor-Diaz, R, Ver-Hoeye, S, Vazquez-Antuna, C, Hotopan, GR, Fernandez-Garcia, M and Las Heras Andres, F (2012) Sub-millimeter wave frequency scanning 8 × 1 antenna array. Progress Electromagnetics Research 132, 215232.CrossRefGoogle Scholar
157.Liu, H, Lei, S, Shi, X and Li, L (2013) Study of antenna superstrates using metamaterials for directivity enhancement based on Fabry-Perot resonant cavity. International Journal of Antenna and Propagation 2013, 110.Google Scholar
158.Lee, YJ, Yeo, J, Mittra, R and Park, WS (2005) Thin frequency selective surface (FSS) superstrate with different periodicities for dual-band directivity enhancement, in Proceedings of the IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials (IWAT’ 05), 375–378, March 7, 2005.Google Scholar
159.Foroozesh, A and Shafai, L (2010) Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design. IEEE Transactions on Antennas and Propagation 58(2), 258270.CrossRefGoogle Scholar
160.Li, B, Wu, B and Liang, CH (2006) Study on high gain circular waveguide array antenna with metamaterial structure. Progress Electromagnetic Research 60, 207219.CrossRefGoogle Scholar
161.Feresidis, AP, Goussetis, G, Wang, S and Vardaxoglou, JC (2005) Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Transactions on Antenna and Propagation 53(1), 209215.CrossRefGoogle Scholar
162.Guzman-Quiros, R, Weily, AR, Gomez-Tornero, JL and Guo, YJ (2016) A fabry-perot antenna with two-dimensional electronic beam scanning. IEEE Transactions on Antennas and Propagation 64(4), 15361541.CrossRefGoogle Scholar
163.Uzunkol, M, Gurbuz, OD, Golcuk, F and Rebeiz, GM (2013) A 0.32 THz SiGe 4 × 4 imaging array using high-efficiency on-chip antennas. IEEE Journal of Solid-State Circuits 48, 20562066.CrossRefGoogle Scholar
164.Berry, CW, Hashemi, MR and Jarrahi, M (2014) Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas. Applied Physics Letters 104, 081122/1–3.CrossRefGoogle Scholar
165.Ito, H, Yoshimatsu, T, Yamamoto, H and Ishibashi, T (2014) Broadband photonic terahertz-wave emitter integrating uni-traveling-carrier photodiode and self-complementary planar antenna. Optical Engineering 53(3), 031209.CrossRefGoogle Scholar
166.Liu, S, Shou, X and Nahata, A (2011) Coherent detection of multiband terahertz radiation using a surface plasmon-polariton based photo-conductive antennas. IEEE Transactions on Terahertz Science and Technology 1, 412415.CrossRefGoogle Scholar
167.Yang, S, Hashemi, MR, Berry, CW and Jarrahi, M (2014) 7.5% optical-to-terahertz conversion effeciency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes. IEEE Transactions on Terahertz Science and Technology 4(5), 575581.CrossRefGoogle Scholar