Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T07:49:58.588Z Has data issue: false hasContentIssue false

Scattering properties of carbon nanotube arrays

Published online by Cambridge University Press:  25 November 2010

Andrea G. Chiariello*
Affiliation:
Department of Electrical Engineering, University of Naples Federico II, via Claudio 21, Naples 80125, Italy. Phone: +39 081 7683505.
Carlo Forestiere
Affiliation:
Department of Electrical Engineering, University of Naples Federico II, via Claudio 21, Naples 80125, Italy. Phone: +39 081 7683505.
Antonio Maffucci
Affiliation:
Department DAEIMI, University of Cassino, via Di Biasio 43, Cassino 03043, Italy.
Giovanni Miano
Affiliation:
Department DAEIMI, University of Cassino, via Di Biasio 43, Cassino 03043, Italy.
*
Corresponding author: A.G. Chiariello Email: [email protected]

Abstract

In this paper, we investigate the scattering properties of an array of finite-length single-walled carbon nanotubes (SWCNTs), up to terahertz frequencies. The problem is cast in terms of a Pocklington-like equation. The current density along the CNT is described by a quasi-classical transport model, recently proposed. The numerical solution is obtained by means of the Galerkin method. Case studies are carried out, either referred to isolated SWCNTs and an array of SWCNTs, aimed at investigating the frequency behavior of the scattered field.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Hagmann, M.J.: Isolated carbon nanotubes as high-impedance transmission lines for microwave through terahertz frequencies. IEEE Trans. Nanotechnol., 4 (2) (2005), 289296.CrossRefGoogle Scholar
[2]Marulanda, M. (ed.): Carbon Nanotubes, IN-TECH, Vienna, Austria, 2010.Google Scholar
[3]Morris, J.E.: Nanopackaging: Nanotechnologies and Electronics Packaging, Springer, New York, 2008.CrossRefGoogle Scholar
[4]Postma, H.W.C.; Teepen, T.; Yao, Z.; Grifoni, M.; Dekker, C.: Carbon nanotube single-electron transistors at room temperature. Science, 293 (5527) (2001), 7679.CrossRefGoogle ScholarPubMed
[5]Xu, H.; Li, C.; Srivastava, N.; Banerjee, K.: Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects. IEEE Trans. Electron Devices, 56 (9) (2009), 17991821.Google Scholar
[6]Hanson, G.W.: Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antennas Propag., 53 (2005), 426.CrossRefGoogle Scholar
[7]Maksimenko, S.A.; Slepyan, G.Ya.; Nemilentsau, A.M.; Shuba, M.V.: Carbon nanotube antenna: far-field, near-field and thermal-noise properties. Phys. Rev. E, 40 (2008), 2360.Google Scholar
[8]Lee, S.-E.; Kang, J.-H; Kim, C.-G.: Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites. Compos. Struct., 76 (4) (2006), 397405.CrossRefGoogle Scholar
[9]Maffucci, A.: Carbon nanotubes in nanopackaging applications. IEEE Mag. Nanotechnol., 3 (3) (2009), 2225.CrossRefGoogle Scholar
[10]Nasis, G.; Plegas, I.G.; Sofronis, D.S.; Anastassiu, H.T.: Transmission and scattering properties of carbon nanotube arrays, in Proc. of EMC Europe Workshop 2009, Athens, Greece, 11–12 June 2009, 14.CrossRefGoogle Scholar
[11]Hao, J.; Hanson, G.W.: Electromagnetic scattering from finite-length metallic carbon nanotubes in the lower IR bands. Phys. Rev. B, 74 (2006), 035119.CrossRefGoogle Scholar
[12]Slepyan, G.Y.; Krapivin, N.A.; Maksimenko, S.A.; Lakhtakia, A.; Yevtushenko, O.M.: Scattering of electromagnetic waves by a semi-infinite carbon nanotube. AEU – Int. J. Electron. Commun., 55 (4) (2001), 273280.CrossRefGoogle Scholar
[13]Slepyan, G.Y.; Maksimenko, S.A.; Lakhtakia, A.; Yevtushenko, O.; Gusakov, A.V.: Electrodynamics of carbon nanotubes: dynamics conductivity, impedance boundary conditions, and surface wave propagation. Phys. Rev. B, 60 (1999), 17136.CrossRefGoogle Scholar
[14]Ferry, D.K.; Goodnick, S.M.: Transport in Nanostructures, Cambridge University Press, Cambridge, 2001.Google Scholar
[15]Miyamoto, Y.; Louie, S.G.; Cohen, M.L.: Chiral conductivities of nanotubes. Phys. Rev. Lett., 76 (1996), 21212124.CrossRefGoogle ScholarPubMed
[16]Burke, P.J.: Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol., 1 (2002), 129144.CrossRefGoogle Scholar
[17]Ashcroft, N.W.; Mermin, N.D.: Solid State Physics, Harcourt Brace College Publishers, Fort Worth, Tex., 1976.Google Scholar
[18]Naeemi, A.; Meindl, J.D.: Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Devices Lett., 27 (2006), 338340.CrossRefGoogle Scholar
[19]Salahuddin, S.; Lundstrom, M.; Datta, S.: Transport effects on signal propagation in quantum wires. IEEE Trans. Electron Devices, 52 (2005), 17341742.CrossRefGoogle Scholar
[20]Miano, G.; Forestiere, C.; Maffucci, A.; Maksimenko, S.A.; Slepyan, G.Y.: Signal propagation in carbon nanotubes of arbitrary chirality. IEEE Trans. Nanotechnol. (in press), available on-line DOI: 10.1109/TNANO.2009.2034262.Google Scholar
[21]Forestiere, C.; Maffucci, A.; Miano, G.: Hydrodynamic model for the signal propagation along carbon nanotubes. J. Nanophotonics, 4 (2010), 041695/1–20.Google Scholar
[22]Miano, G.; Villone, F.: An integral formulation for the electrodynamics of metallic carbon nanotubes based on a fluid model. IEEE Trans. Antennas Propag., 54 (2006), 2713.CrossRefGoogle Scholar
[23]Fikioris, G.: The approximate integral equation for a cylindrical scatterer has no solution. J. Electromagn. Waves Appl., 15 (9) (2001), 11531159(7).CrossRefGoogle Scholar
[24]Saito, R.; Dresselhaus, G.; Dresselhaus, S.: Physical Properties of Carbon Nanotubes, Imperial College Press, London, UK, 1998.CrossRefGoogle Scholar
[25]Fikioris, G.: The use of the frill generator in thin-wire integral equations. IEEE Trans. Antennas Propag., 51 (2003), 18471854.CrossRefGoogle Scholar