Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T19:42:49.429Z Has data issue: false hasContentIssue false

Realization of a 30-W highly efficient and linear reconfigurable dual-band power amplifier using the continuous mode approach

Published online by Cambridge University Press:  26 November 2013

Vincenzo Carrubba*
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastraße 72, 79108 Freiburg, Germany. Phone: +49 761 5159 257
Stephan Maroldt
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastraße 72, 79108 Freiburg, Germany. Phone: +49 761 5159 257
Markus Mußer
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastraße 72, 79108 Freiburg, Germany. Phone: +49 761 5159 257
Herbert Walcher
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastraße 72, 79108 Freiburg, Germany. Phone: +49 761 5159 257
Friedbert Van Raay
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastraße 72, 79108 Freiburg, Germany. Phone: +49 761 5159 257
Rüdiger Quay
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastraße 72, 79108 Freiburg, Germany. Phone: +49 761 5159 257
Oliver Ambacher
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastraße 72, 79108 Freiburg, Germany. Phone: +49 761 5159 257
Dirk Wiegner
Affiliation:
Alcatel Lucent Bell-Labs, Lorenzstraße 10, 70435 Stuttgart, Germany
Ulrich Seyfried
Affiliation:
Alcatel Lucent Bell-Labs, Lorenzstraße 10, 70435 Stuttgart, Germany
Thomas Bohn
Affiliation:
Alcatel Lucent Bell-Labs, Lorenzstraße 10, 70435 Stuttgart, Germany
Andreas Pascht
Affiliation:
Alcatel Lucent Bell-Labs, Lorenzstraße 10, 70435 Stuttgart, Germany
*
Corresponding author: V. Carrubba Email: [email protected]

Abstract

This paper presents the design methodology and the realization of a highly linear and power-efficient reconfigurable dual-band amplifier based on the continuous/Class-ABJ approach. The Class-ABJ theory allows presenting different reactive solutions on both fundamental and second harmonic terminations compared with the standard Class-AB mode. Despite the various terminations, a constant optimum output performance in terms of power, gain, and efficiency can still be achieved. The output impedances are then translated into frequency thus allowing the realization of broadband power amplifiers (PAs) at high-power level of 30 W. In this work, the Class-ABJ broadband approach will be used for the realization of a reconfigurable dual-band power amplifier operating in the two frequency bands 2.1–2.2 and 2.5–2.6 GHz. Continuous wave (CW) measurements on the realized PA show power and efficiency greater than 17 W and 55% in the two frequency bands with peak values up to 30 W and 63.7%. Indeed, it is shown that such novel modes can be predistorted and therefore the linearity requirement can also be met.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Madan, R.; Borran, J.; Sampath, A.; Bhushan, N.; Khandekar, A.; Tingfang, J.: Cell association and interference coordination in heterogeneous LTE-A cellular networks. IEEE J. Sel. Areas Commun., 28 (2010), 14791489.Google Scholar
[2]Debaillie, B.; Giry, A.; Gonzalez, M.J.; Dussopt, L.; Ferling, L.M.; Giannini, V.: Opportunities for energy savings in Pico/Femto-cell base stations, in Future Network & Mobile Summit, June 2011, 18.Google Scholar
[3]Seung Hun, J.; Choon Sik, C.; Lee, J.W.; Jaeheung, K.: Concurrent dual-band Class-E power amplifier using composite right/left-handed transmission lines. IEEE Trans. Microw. Theory Techn., 55 (6) (2007), 13411347.Google Scholar
[4]Negra, R.; Sadeve, A.; Bensmida, S.; Ghannouchi, F.M.: Concurrent dual-band class-F load coupling network for applications at 1.7 and 2.14 GHz. IEEE Trans. Circuits Syst. II, 55 (3) (2008), 259263.Google Scholar
[5]Colantonio, P.; Giannini, F.; Giofre, R.; Piazzon, L.: A design technique for concurrent dual-band harmonic tuned power amplifier. IEEE Trans. Microw. Theory Techn., 56 (11) (2008), 25452555.Google Scholar
[6]Liu, R.; Schreurs, D.; De Raedt, W.; Vanaverbeke, F.; Mertens, R.: Concurrent dual-band power amplifier with different operation modes, in IEEE MTT-S Int. Microwave Symp. Dig., June 2011, 14.CrossRefGoogle Scholar
[7]Kalim, D.; Negra, R.: Concurrent planar multiharmonic dual-band load coupling network for switching-mode power amplifiers, in IEEE MTT-S Int. Microwave Symp. Dig., June 2010, 14.Google Scholar
[8]Ciccognani, W.; Limiti, E.; Scucchia, L.: A new structure for the design of Dual Band power Amplifiers, in Integrated Nonlinear Microwave and Millimeter-Wave Circuits (INMMIC), April 2011, 14.Google Scholar
[9]Rawat, K.; Ghannouchi, F.M.: Dual-band matching technique based on dual-characteristic impedance transformers for dual-band power amplifiers design. Microw. Antennas and Propag. (IET), 5 (2011), 17201729.Google Scholar
[10]Gao, S.; Wang, Z.; Park, C.-W.: Concurrent Dual-Band Amplifier with Second Harmonic Controlled by gate and Drain Bias Circuit, in Microwave Technology & Computational Electromagnetics (ICMTCE), May 2011, 309312.CrossRefGoogle Scholar
[11]Chen, W. et al. : Design and linearization of concurrent dual-band doherty power amplifier with frequency-dependent power ranges. IEEE Trans. Microw. Theory Tech., 59 (10) (2011), 25372546.Google Scholar
[12]Giofré, R.; Colantonio, P.; Giannini, F.: GaN broadband power amplifiers for terrestrial and space transmitters, in Microwave Radar and Wireless Communications (MIKON), 2012, 605609.Google Scholar
[13]Kang, D. et al. : 1.6–2.1 GHz broadband Doherty power amplifiers for LTE handset applications, in IEEE MTT-S International Microwave Symp. Digest, June 2011, 14.CrossRefGoogle Scholar
[14]Wu, D.; Mkadem, F.; Boumaiza, S.: Design of a broadband and highly efficient 45 W GaN power amplifier via simplified real frequency technique, in IEEE MTT-S International Microwave Symp. Digest, 2010, 1.Google Scholar
[15]Cripps, S.C.; Tasker, P.J.; Clarke, A.L.; Lees, J.; Benedikt, J.: On the continuity of high efficiency modes in linear RF power amplifiers. IEEE Microw. Wirel. Compon. Lett., 19 (2009), 665667.CrossRefGoogle Scholar
[16]Carrubba, V.; Clarke, A.L.; Akmal, M.; Benedikt, J.; Tasker, P.J.; Cripps, S.C.: On the extension of the continuous Class-F mode power amplifier. IEEE Trans. Microw. Theory Tech., 59 (2011), 12941303.Google Scholar
[17]Carrubba, V. et al. : Dual-Band Class-ABJ AlGaN/GaN high power amplifier, in Proc. 42nd European Microwave Conf. (EuMC), October 2012.Google Scholar
[18]Cripps, S.C.: RF Power Amplifier for Wireless Communication, 2nd ed., Artech House, 2006.Google Scholar
[19]Colantonio, F.; Giannini, F.; Limiti, E.: High Efficiency RF and Microwave Solid State Power Amplifiers, John Wiley House, 2009.Google Scholar
[20]Wright, P.; Lees, J.; Benedikt, J.; Tasker, P.J.; Cripps, S.: A methodology for realizing high efficiency Class-J in a linear and broadband PA, in IEEE Transactions Microwave Theory and Techniques, December 2009, 31963204.CrossRefGoogle Scholar
[21]Canning, T.; Almuhaisen, A.; Lees, J.; Benedikt, J.; Cripps, S.C.; Tasker, P.J.: Utilisation of RF I-V waveform load-pull information to identify the role FET knee profile has on locating the efficiency maxima, in Microwave Measurement Symposium (ARFTG), December 2011, 14.Google Scholar
[22]Pozar, D.M.: Microwave Engineering, 2nd ed., John Wiley and Sons, 1998. ISBN 0-471-17096-8.Google Scholar
[23]Mimis, K.; Morris, K.A.; Bensmida, S.; McGeehan, J.P.: Multichannel and wideband power amplifier design methodology for 4 G communication systems based on hybrid Class-J operation. IEEE Trans. Microw. Theory Tech., 60 (2012), 25622570.Google Scholar
[24]Carrubba, V.; Lees, J.; Benedikt, J.; Tasker, P.J.; Cripps, S.C.: A novel highly efficient broadband continuous Class-F RFPA delivering 74% average efficiency for an octave bandwidth, in IEEE MTT-S Int. Microwave Symp. Digest, June 2011, 14.Google Scholar
[25]Damman, M. et al. : Reliability of HEMTs under DC- and RF-operation, in Reliability of Compound Semiconductors Digest (ROCS), 2009, 1932.Google Scholar
[26]Seelmann-Eggebert, M.; Merkle, T.; van Raay, F.; Quay, R.; Schlechtweg, M.: A systematic state-space approach to large-signal transistor modeling. IEEE Trans. Microw. Theory Techn., 55 (2) (2007), 195206.Google Scholar
[27]Roff, C.; Benedikt, J.; Tasker, P.J.: Design approach for realization of very high efficiency power amplifiers, in IEEE MTT-S Int. Digest., June 2007, 143146.Google Scholar
[28]Daehyun, K. et al. : Envelope tracking two-stage power amplifiers, in European Microwave Conf. (EuMC), 2011, 12051208.Google Scholar
[29]Kenington, P.B.: High Linearity RF Amplifier Design, Artech House, Norwood, MA, 2000.Google Scholar