Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-21T16:27:59.306Z Has data issue: false hasContentIssue false

Planar discrete lens antenna integrated on dielectric substrate for millimeter-wave transceiver module

Published online by Cambridge University Press:  18 December 2017

Kossaila Medrar*
Affiliation:
Univ. Grenoble-Alpes, 38000 Grenoble, France CEA, LETI, MINATEC Campus, 38054 Grenoble, France
Loic Marnat
Affiliation:
Univ. Grenoble-Alpes, 38000 Grenoble, France CEA, LETI, MINATEC Campus, 38054 Grenoble, France
Laurent Dussopt
Affiliation:
Univ. Grenoble-Alpes, 38000 Grenoble, France CEA, LETI, MINATEC Campus, 38054 Grenoble, France
*
Corresponding author: K. Medrar Email: [email protected]

Abstract

A novel topology of high-gain millimeter-wave antenna compatible with substrate integration is presented. The antenna is composed of a planar discrete lens laid on top of a core dielectric, while the planar focal source is assembled on the bottom side. The antenna can be fabricated as a single, robust and compact module using standard low-cost PCB technologies, and is compatible with IC integration such as a transceiver circuit for fully integrated millimeter-wave front-end modules. The proposed architecture is studied with two compact V-band antennas (32 mm × 32 mm × 13.2 mm). The main design rules are demonstrated for unit cells, focal source, and planar lens at V-band. Promising performances in terms of gain (17.6 and 20.4 dBi), aperture efficiency (14 and 26%), and fractional 3-dB gain bandwidth (17 and 18%) are obtained experimentally for the two considered compact antennas.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Boriskin, A.; Sauleau, R.: Aperture Antennas for Millimeter and Sub-Millimeter Wave. Springer, Cham, 2017.Google Scholar
[2]Shin, W.; Ku, B.H.; Inac, O.; Ou, Y.C.; Rebeiz, G.M.: A 108–114 GHz 4 × 4 wafer-scale phased array transmitter with high-efficiency on-chip antennas. IEEE J. Solid-State Circuits, 48 (9) (2013), 20412055.Google Scholar
[3]Deng, X.D.; Li, Y.; Li, J.; Liu, C.; Wu, W.; Xiong, Y.Z.: A 320-GHz 1 × 4 fully integrated phased array transmitter using 0.13-μm SiGe BiCMOS technology. IEEE Trans. Terahertz Sci. Technol., 5 (6) (2015), 930940.Google Scholar
[4]Marnat, L. et al. : V-band transceiver modules with integrated antennas and phased arrays for mmWave access in 5 G mobile networks, in 11th Eur. Conf. on Antennas and Propagation, Paris, France, March 2017.CrossRefGoogle Scholar
[5]Xu, J.; Chen, Z.N.; Qing, X.: CPW center-fed single-layer SIW slot antenna array for automotive radars. IEEE Trans. Antennas Propag., 62 (9) (2014), 45284536.Google Scholar
[6]Gandini, E.; Ettorre, M.; Casaletti, M.; Tekkouk, K.; Coq, L.L.; Sauleau, R.: SIW slotted waveguide array with pillbox transition for mechanical beam scanning. IEEE Antennas Wireless Propag. Lett., 11 (2012), 15721575.CrossRefGoogle Scholar
[7]Li, T.; Dou, W.B.: Millimetre-wave slotted array antenna based on double-layer substrate integrated waveguide. Antennas Propag. IET Microw., 9 (9) (2015), 882888.CrossRefGoogle Scholar
[8]Zhang, B. et al. : Integration of a 140 GHz packaged LTCC grid array antenna with an InP detector. IEEE Trans. Compon. Packag. Manuf. Technol., 5 (8) (2015), 10601068.Google Scholar
[9]Sun, M.; Zhang, Y.P.; Guo, Y.X.; Chua, K.M.; Wai, L.L.: Integration of grid array antenna in chip package for highly integrated 60-GHz radios. IEEE Antennas Wireless Propag. Lett., 8 (2009), 13641366.CrossRefGoogle Scholar
[10]Chen, Z.; Zhang, Y.P.; Bisognin, A.; Titz, D.; Ferrero, F.; Luxey, C.: An LTCC microstrip grid array antenna for 94-GHz applications. IEEE Antennas Wireless Propag. Lett., 14 (2015), 12791281.CrossRefGoogle Scholar
[11]Hosseini, A.; Kabiri, S.; Flaviis, F.D.: V -band high-gain printed quasi-parabolic reflector antenna with beam-steering. IEEE Trans. Antennas Propag., 65 (4) (2017), 15891598.CrossRefGoogle Scholar
[12]Pozar, D.M.; Targonski, S.D.; Syrigos, H.D.: Design of millimeter wave microstrip reflectarrays. IEEE Trans. Antennas Propag., 45 (2) (1997), 287296.Google Scholar
[13]Hu, W. et al. : Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal. IEEE Trans. Antennas Propag., 56 (10) (2008), 31123117.Google Scholar
[14]Xia, X.; Wu, Q.; Wang, H.; Yu, C.; Hong, W.: Wideband millimeter-wave microstrip reflectarray using dual-resonance unit cells. IEEE Antennas Wireless Propag. Lett., 16 (2017), 47.Google Scholar
[15]Thornton, J.; Huang, K.-C.: Modern Lens Antennas for Communications Engineering. John Wiley & Sons, Hoboken, NJ, 2013.Google Scholar
[16]Rhys, T.A.: The design of radially symmetric lenses. IEEE Trans. Antennas Propag., 18 (4) (1970), 497506.CrossRefGoogle Scholar
[17]Nguyen, N.T.; Delhote, N.; Ettorre, M.; Baillargeat, D.; Le Coq, L.; Sauleau, R.: Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography. IEEE Trans. Antennas Propag., 58 (8) (2010), 27572762.Google Scholar
[18]Al-Nuaimi, M.K.T.; Hong, W.; Zhang, Y.: Design of high-directivity compact-size conical horn lens antenna. IEEE Antennas Wireless Propag. Lett., 13 (2014), 467470.Google Scholar
[19]Pasqualini, D.; Maci, S.: High-frequency analysis of integrated dielectric lens antennas. IEEE Trans. Antennas Propag., 52 (3) (2004), 840847.Google Scholar
[20]Yi, H.; Qu, S.W.; Ng, K.B.; Chan, C.H.; Bai, X.: 3-D printed millimeter-wave and terahertz lenses with fixed and frequency scanned beam. IEEE Trans. Antennas Propag., 64 (2) (2016), 442449.Google Scholar
[21]Bisognin, A. et al. : Millimeter-wave antenna-in-package solutions for WiGig and backhaul applications, in 2015 Int. Workshop on Antenna Technology (iWAT), 2015, 5255.Google Scholar
[22]Xu, J.; Chen, Z.N.; Qing, X.: 270-GHz LTCC-integrated high gain cavity-backed Fresnel zone plate lens antenna. IEEE Trans. Antennas Propag., 61 (4) (2013), 16791687.Google Scholar
[23]Chan, C.H.; Ng, K.B.; Qu, S.W.: Gain enhancement for low-cost terahertz Fresnel zone plate lens antennas, in 2015 Int. Workshop on Antenna Technology (iWAT), 2015 6669.CrossRefGoogle Scholar
[24]Reid, D.R.; Smith, G.S.: A full electromagnetic analysis of grooved-dielectric Fresnel zone plate antennas for microwave and millimeter-wave applications. IEEE Trans. Antennas Propag., 55 (8) (2007), 21382146.Google Scholar
[25]Black, D.N.; Wiltse, J.C.; Millimeter-wave characteristics of phase-correcting Fresnel zone plates. IEEE Trans. Microw. Theory Tech., 35 (12) (1987), 11221129.Google Scholar
[26]Hristov, H.D.; Herben, M.H.A.J.: Millimeter-wave Fresnel-zone plate lens and antenna. IEEE Trans. Microw. Theory Tech., 43 (12) (1995), 27792785.Google Scholar
[27]Zhang, S.: Design and fabrication of 3D-printed planar Fresnel zone plate lens. Electron. Lett., 52 (10) (2016), 833835.Google Scholar
[28]Kaouach, H.; Dussopt, L.; Lantéri, J.; Koleck, T.; Sauleau, R.: Wideband low-loss linear and circular polarization transmit-arrays in V-band. IEEE Trans. Antennas Propag., 59 (7) (2011), 25132523.CrossRefGoogle Scholar
[29]Dussopt, L.; Moknache, A.; Potelon, T.; Sauleau, R.; Switched-beam E-band transmit array antenna for point-to-point communications, in 11th Eur. Conf. on Antennas and Propagation (EUCAP), Paris, France, 2017, 31193122.Google Scholar
[30]Dussopt, L. et al. : A V-band switched-beam linearly-polarized transmit-array antenna for wireless backhaul applications. IEEE Trans. Antennas Propag., 65 (12) (2017), 67886793.Google Scholar
[31]Zevallos Luna, J. A.; Dussopt, L.; Siligaris, A.: Packaged transceiver with on-chip integrated antenna and planar discrete lens for UWB millimeter-wave communications, in 2014 IEEE Int. Conf. on Ultra-WideBand (ICUWB), 2014, 374378.Google Scholar
[32]Bhattacharyya, A.K.: Phased Array Antennas: Floquet Analysis, Synthesis, BFNs and Active Array Systems. John Wiley & Sons, Hoboken, NJ, 2006.Google Scholar
[33]Chen, L.F.; Ong, C.K.; Neo, C.P.; Varadan, V.V.; Varadan, V.K.: Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, Southern Gate, Chichester, 2004.Google Scholar
[34]Balanis, C.A.: Antenna Theory: Analysis and Design, 3rd ed. John Wiley & Sons, Hoboken, NJ, 2015.Google Scholar