Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T04:31:27.348Z Has data issue: false hasContentIssue false

Pi-shaped quarter wavelength structure for multiband applications

Published online by Cambridge University Press:  28 August 2013

Zhebin Wang*
Affiliation:
University of Quebec in Rimouski, Electrical Engineering, 300 Allee des Ursulines, Rimouski, Quebec, G5L3A1, Canada. Phone: 1-4187231986 ext: 1737
Chan-Wang Park
Affiliation:
University of Quebec in Rimouski, Electrical Engineering, 300 Allee des Ursulines, Rimouski, Quebec, G5L3A1, Canada. Phone: 1-4187231986 ext: 1737
*
Corresponding author: Z. Wang Email: [email protected]

Abstract

In this paper, for the first time, we present a novel Pi-shaped structure using resonators for multiband applications. The multiband Pi-shaped structure with LC resonators is analyzed. In order to demonstrate the proposed multiband Pi-shaped structure, one tri-band Wilkinson power divider and one tri-band rat-race coupler are designed, fabricated, and tested. The compactness of the two demonstrated components is well kept by putting all stubs with resonators inside the components themselves. Measured results are in good agreement with the simulated results.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Wang, C.Y.; Lu, S.S.; Meng, C.C.; Lin, Y.S.: A GaInP/GaAs HBT micromixer for 2.4/5.2/5.7-GHz multiband WLAN applications. Microw. Opt. Technol. Lett., 43 (1) (2004), 8789.Google Scholar
[2]Yuan, Z.-X.; Yin, Y.-Z.; Ding, Y.; Li, B.; Xie, J.J.: Multiband printed and double-sided dipole antenna for WLAN/WiMAX applications. Microw. Opt. Technol. Lett., 54 (4) (2012), 10191022.Google Scholar
[3]Herbertz, K.; Lucyszyn, S.: Two-dimensional metamaterials for dual-band filter applications, in 38th European Microwave Conf., Amsterdam, The Netherlands, 2008.CrossRefGoogle Scholar
[4]Tseng, C.-H.; Shao, H.-Y.: A new dual-band microstrip bandpass filter using net-type resonators. IEEE Microw. Wirel. Compon. Lett., 20 (4) (2010), 196198.Google Scholar
[5]Park, M.-J.: Two-section cascaded coupled line Wilkinson power divider for dual-band applications. IEEE Microw. Wirel. Compon. Lett., 19 (4) (2009), 188190.Google Scholar
[6]Wu, Y.; Liu, Y.; Zhang, Y.; Gao, J.; Zhou, H.: A dual band unequal Wilkinson power divider without reactive components. IEEE Trans. Microw. Theory Tech., 57 (1) (2009), 216222.Google Scholar
[7]Lin, I-H.; DeVincentis, M.; Caloz, C.; Itoh, T.: Arbitrary dual-band components using composite right/left-handed transmission lines. IEEE Trans. Microw. Theory Tech., 52 (4) (2004), 11421149.Google Scholar
[8]Chi, P.-L.; Lee, C.-J.; Itoh, T.: A compact dual-band metamaterial-based rat-race coupler for a MIMO system application, in IEEE MTT-S Int. Microwave Symp. Digest, Atlanta, USA, 2008.Google Scholar
[9]Chiou, Y.-C.; Kuo, J.-T.; Chan, C.-H.: New miniaturized dual-band rat-race coupler with microwave C-section, in IEEE MTT-S Int. Microwave Symp. Digest, Boston, USA, 2009.Google Scholar
[10]Chongcheawchamnan, M.; Patisang, S.; Krairiksh, M.; Robertson, I.D.: Tri-band Wilkinson power divider using a three-section transmission-line transformer. IEEE Microw. Wirel. Compon. Lett., 16 (8) (2006), 452454.Google Scholar
[11]Chin, K.-S.; Lin, K.-M.; Wei, Y.-H.; Tseng, T.-H.; Yang, Y.-J.: Compact dual-band branch-line and rat-race couplers with stepped-impedance-stub lines. IEEE Trans. Microw. Theory Tech., 58 (5) (2010), 12131221.Google Scholar
[12]Edmund Neo, W.C. et al. : Adaptive multi-band multi-mode power amplifier using integrated varactor-based tunable matching networks. IEEE J. Solid-State Circuits, 41 (9) (2006), 21662176.Google Scholar
[13]Fukuda, A.; Okazaki, H.; Hirota, T.; Yamao, Y.: Novel 900 MHz/1.9 GHz dual-mode power amplifier employing MEMS switches for optimum matching. IEEE Microw. Wirel. Compon. Lett., 14 (3) (2004), 121123.Google Scholar
[14]Hur, J.; Lee, O.; Lee, C.-H.; Lim, K.; Laskar, J.: A multi-level and multi-band class-D CMOS power amplifier for the LINC system in the cognitive radio application. IEEE Microw. Wirel. Compon. Lett., 20 (6) (2010), 352354.Google Scholar
[15]Kalim, D.; Negra, R.: Concurrent planar multiharmonic dual-band load coupling network for switching-mode power amplifiers, in IEEE MTT-S Int. Microwave Symp. Digest, Baltimore, USA, 2011.CrossRefGoogle Scholar
[16]Wang, Z.; Park, C.-W.: Dual-band GaN HEMT power amplifier using resonators in matching networks, in 12th Annual IEEE Wireless and Microwave Technology (WAMI) Conf., Clearwater, USA, 2011.Google Scholar
[17]Wang, Z.; Park, C.-W.: Concurrent tri-band GaN HEMT power amplifier using resonators in both input and output matching networks, in 13th Annual IEEE Wireless and Microwave Technology (WAMI) Conf., Cocoa Beach, USA, 2012.Google Scholar
[18]Kim, I.; Moon, J.; Kim, J.; Jee, S.; Son, J.; Kim, B.: High efficiency 3-stage Doherty power amplifier using gate bias adaption. Int. J. Microw. Wirel. Technol., 3 (1) 2011, 4758.Google Scholar
[19]Wang, Z.; Park, C.-W.: Multiband Pi-shaped structure with resonators for tri-band Wilkinson power divider and tri-band rat-race coupler, in IEEE MTT-S Int. Microwave Symp. Digest, Montreal, Canada, 2012.Google Scholar
[20]Pozar, D.M.: 5.4 The quarter-wave transformer, In Microwave Engineering, 4th ed., John Wiley & Sons, Inc., USA, 2012, 246247.Google Scholar
[21]Wang, Z.; Park, C.-W.: Novel wideband GaN HEMT power amplifier using microstrip radial stub to suppress harmonics, in IEEE MTT-S Int. Microwave Symp. Digest, Montreal, Canada, 2012.Google Scholar