Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T04:49:23.321Z Has data issue: false hasContentIssue false

Opportunity trajectory reconstruction techniques for evaluation of ATC systems

Published online by Cambridge University Press:  15 May 2009

Jesus Garcia*
Affiliation:
GIAA, Universidad Carlos III de Madrid, Avda Universidad 22, 28270 Colmenarejo, Spain. Phone: +(34) 918561315; Fax: +(34) 91 8561271
Juan A. Besada
Affiliation:
GPDS-CEDITEC, ETSI Telecomunicacion, Ciudad Universitaria s/n, 28040 Madrid, Spain. Phone: +(34) 913367225; Fax: +(34) 913365876
Andres Soto
Affiliation:
GPDS-CEDITEC, ETSI Telecomunicacion, Ciudad Universitaria s/n, 28040 Madrid, Spain. Phone: +(34) 913367225; Fax: +(34) 913365876
Gonzalo de Miguel
Affiliation:
GPDS-CEDITEC, ETSI Telecomunicacion, Ciudad Universitaria s/n, 28040 Madrid, Spain. Phone: +(34) 913367225; Fax: +(34) 913365876
*
Corresponding author: Jesus Garcia Email: [email protected]

Abstract

This paper describes some key points of a new tool being currently developed by Eurocontrol for the assessment of air traffic control (ATC) multisensor trackers performance. It summarizes the algorithmic foundations of the high-accuracy trajectory reconstruction process used to obtain reference trajectories from recorded measures. These trajectories will serve as a reference for the evaluation of the accuracy of ATC data processing centers. The performance of the system is illustrated with some reconstruction experiments on synthetic and real data.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Besada, J.; Soto, A.; de Miguel, G.; Garcia, J.; Alcazar, R.; Voet, E.: TRES: multiradar–multisensor data processing assessment using opportunity, in 2008 IEEE Radar Conf., 2008.CrossRefGoogle Scholar
[2]Gelb, A.: Applied Optimal Estimation, The M.I.T. Press, Cambridge, 1982.Google Scholar
[3]Rafati, A.; Moshiri, B.; Salahshoor, K.; Tabatabaei, M.: Asynchronous Sensor Bias Estimation in Multisensor-Multitarget Systems. 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems., 2006.Google Scholar
[4]Lin, X.; Bar-Shalom, Y.; Kirubarajan, T.: Multisensor multitarget bias estimation for general asynchronous sensors. IEEE Trans. Aerosp. Electron. Syst., 41 (2005), 899921.Google Scholar
[5]Pyung, S.K.: Separate-bias estimation scheme with diversely behaved biases. IEEE Trans. Aerosp. Electron. Syst., 38 (2002), 333339.CrossRefGoogle Scholar
[6]Paradowski, L.; Kowalski, Z.: An effective coordinates conversion algorithm for radar-controlled anti-aircraft systems, in 12th Int. Conf. Microwaves and Radar, MIKON '98, 1998.Google Scholar
[7]Leeson, M.J.: Error analysis for a wide area multilateration system QinetiQ/ C&IS/ ADC/ 520896/7/19.Google Scholar
[8]Renes, J.J.; Best, M.R.: MURATREC Multi-Radar Trajectory Reconstruction Facility, Theoretical Background Technical Report NRL CR 89196 L, National Luchten Ruimtevaartlaboratorium, 1985.Google Scholar
[9]Helmick, R.E.; Blair, W.D.; Hoffman, S.A.: Fixed-interval smoothing for Markovian switching systems. IEEE Trans. Inf. Theory, 41 (1995), 18451855.CrossRefGoogle Scholar
[10]García, J.; Molina, J.M.; Besada, J.; de Miguel, G.: Model-based trajectory reconstruction using IMM smoothing and motion pattern identification, in Proc. 10th Int. Conf. Information Fusion, 2007.CrossRefGoogle Scholar
[11]Bar-Shalom, Y.: Multitarget–Multisensor Tracking: Advanced Applications, Artech House, Norwood, MA, 1990.Google Scholar
[12]Rong Li, X.; Bar-Shalom, Y.: Design of an interacting multiple model algorithm for air traffic control tracking. IEEE Trans. Control Syst. Technol., 1 (1993), 186194.Google Scholar