Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T16:35:16.739Z Has data issue: false hasContentIssue false

Next generation integrated SiGe mm-wave circuits for automotive radar sensors

Published online by Cambridge University Press:  04 January 2013

Nils Pohl*
Affiliation:
Institute for Integrated Systems, Ruhr-University Bochum, D-44780, Bochum, Germany
Herbert Knapp
Affiliation:
Infineon Technologies AG, D-85579 Neubiberg, Germany.
Christian Bredendiek
Affiliation:
Institute for Integrated Systems, Ruhr-University Bochum, D-44780, Bochum, Germany
Rudolf Lachner
Affiliation:
Infineon Technologies AG, D-85579 Neubiberg, Germany.
*
Corresponding author: N. Pohl Email: [email protected]

Abstract

In this paper, radar transmitter circuits for next generation automotive radar sensors are presented. A 79 GHz radar transmitter with an output power of 14.5 dBm consuming only 165 mA (including frequency dividers) from a 3.3 V supply voltage clearly shows the advantage of using an improved SiGe technology with an fmax of 380 GHz. In addition, two radar transmitters for higher frequencies (around 150 GHz) based on frequency doubler circuits are showing the potential of SiGe technologies. The first transmitter achieves an output power of 3 dBm (single ended) at 144 GHz, whereas the second transmitters delivers a differential output power of 0 dBm at 150 GHz. Both transmitters achieve an ultra-wide tuning range of about 45 GHz.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Li, H.; Rein, H.-M.; Suttorp, T.; Böck, J.: Fully integrated SiGe VCOs with powerful output buffer for 77-GHz automotive radar systems and applications around 100 GHz. IEEE J. Solid-State Circuits, 39 (10) (2004) 16501658.Google Scholar
[2]Pfeiffer, U.R.; Reynolds, S.K.; Floyd, B.A.: A 77 GHz SiGe power amplifier for potential applications in automotive radar systems, in Proc. Digest of Papers Radio Frequency Integrated Circuits (RFIC) Symp. 2004 IEEE, (2004), 9194.Google Scholar
[3]Forstner, H.P. et al. : A 77GHz 4-channel automotive radar transceiver in SiGe, in Proc. IEEE Radio Frequency Integrated Circuits Symp. RFIC, 2008, 233236.Google Scholar
[4]Nicolson, S.T. et al. : A low-voltage SiGe BiCMOS 77-GHz automotive radar chipset. IEEE Trans. Microwave Theory Tech., 56 (5) (2008) 10921104.Google Scholar
[5]Trotta, S. et al. : An RCP packaged transceiver chipset for automotive LRR and SRR systems in SiGe BiCMOS technology. IEEE Trans. Microwave Theory Tech., 60 (3) (2012) 778794.Google Scholar
[6]Chevalier, P. et al. : Towards THz SiGe HBTs, in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2011, 5765.CrossRefGoogle Scholar
[7]Knapp, H. et al. : SiGe circuits for automotive radar, in Proc. Topical Meeting Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2007, 231236.Google Scholar
[8]Böck, J. et al. : SiGe bipolar technology for automotive radar applications, in Proc. Meeting Bipolar/BiCMOS Circuits and Technology, 2004, 8487.Google Scholar
[9]Hung, J.-J.; Hancock, T.M.; Rebeiz, G.M.: High-power high-efficiency SiGe Ku- and Ka-band balanced frequency doublers. IEEE Trans. Microwave Theory Tech., 53 (2) (2005) 754761.Google Scholar
[10]Pohl, N.; Rein, H.-M.; Musch, T.; Aufinger, K.; Hausner, J.: SiGe bipolar VCO with ultra-wide tuning range at 80 GHz center frequency. IEEE J. Solid-State Circuits, 44 (10) (2009) 26552662.Google Scholar
[11]Pohl, N.; Klein, T.; Aufinger, K.; Rein, H.-M.: A low-power 80 GHz FMCW radar transmitter with integrated 23 GHz downconverter VCO, in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2011, 215218.Google Scholar
[12]Pohl, N.; Jaeschke, T.; Aufinger, K.: An ultra-wideband 80 GHz FMCW radar system using a SiGe bipolar transceiver chip stabilized by a fractional-N PLL synthesizer. IEEE Trans. Microwave Theory Tech., 60 (3) (2012) 757765.Google Scholar
[13]Bredendiek, C.; Pohl, N.; Aufinger, K.; Bilgic, A.: An ultra-wideband D-band signal source chip using a fundamental VCO with frequency doubler in a SiGe bipolar technology, in Proc. IEEE Radio Frequency Integrated Circuits Symp. RFIC, 2012, pp. 8386.Google Scholar
[14]Öjefors, E.; Heinemann, B.; Pfeiffer, U.R.: Active 220- and 325-GHz frequency multiplier chains in an SiGe HBT technology. IEEE Trans. Microwave Theory Tech., 59 (5) (2011) 13111318.Google Scholar
[15]Forstner, H.P.; Starzer, F.; Haider, G.; Wagner, C.; Jahn, M.: Frequency quadruplers for a 77GHz subharmonically pumped automotive radar transceiver in SiGe, in Proc. European Microwave Integrated Circuits Conf. EuMIC 2009, (2009), 188191.Google Scholar
[16]Bredendiek, C.; Pohl, N.; Aufinger, K.; Bilgic, A.: Differential signal source chips at 150 GHz and 220 GHz in SiGe bipolar technologies based on Gilbert-Cell frequency doublers, in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2012, pp. 8891.Google Scholar
[17]Jahn, M.; Aufinger, K.; Meister, T.F.; Stelzer, A.: 125 to 181 GHz fundamental-wave VCO chips in SiGe technology, in Proc. IEEE Radio Frequency Integrated Circuits Symp. (RFIC), 2012, 8790.Google Scholar
[18]Pfeiffer, U.R.; Ojefors, E.; Zhao, Y.: A SiGe quadrature transmitter and receiver chipset for emerging high-frequency applications at 160GHz, in Proc. IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), 2010, pp. 416417.Google Scholar
[19]Wanner, R.; Lachner, R.; Olbrich, G.R.: A monolithically integrated 190-GHz SiGe push-push oscillator. IEEE Microwave Wireless Compon. Lett., 15 (12) (2005) 862864.Google Scholar