Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T19:17:31.362Z Has data issue: false hasContentIssue false

Neurospectral modeling of rectangular patch with rectangular aperture in the ground plane

Published online by Cambridge University Press:  24 July 2014

Lotfi Djouane
Affiliation:
Electronics Department, University of M'sila, 28000 M'sila, Algeria
Sami Bedra*
Affiliation:
Electronics Department, University of Batna, 05000 Batna, Algeria
Randa Bedra
Affiliation:
Electronics Department, University of Batna, 05000 Batna, Algeria
Tarek Fortaki
Affiliation:
Electronics Department, University of Batna, 05000 Batna, Algeria
*
Corresponding author: S. Bedra Email: [email protected]

Abstract

In this study, we propose an artificial neural network in conjunction with spectral domain approach (SDA), for fast and accurate determination of the resonant frequency and half-power bandwidth of rectangular patch over the ground plane with rectangular aperture. The performances evaluation of the neurospectral method reveals superiority over the conventional SDA model in terms of errors and time. The results obtained from the neurospectral method are in very good agreement with the experimental and theoretical results available in the literature. Finally, numerical results for the effect of rectangular aperture dimensions on the resonant characteristics of the rectangular patch are also investigated.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Kumar, P.; Singh, G.: Theoretical investigation of the input impedance of gap-coupled circular microstrip patch antennas. J Infrared Millim. Terahertz Waves, 30 (11) (2009), 11481160.Google Scholar
[2]Lei, L.; Korolkiewicz, E.; Ghassemlooy, Z.; Sambell, A.; Danaher, S.; Busawon, K.: Investigation of the equivalent circuit parameters and design of a dual polarised dual frequency aperture coupled microstrip antenna. IEEE Trans. Antennas Propag., 61 (4) (2013), 23042308.CrossRefGoogle Scholar
[3]Liu, L.; Ghassemlooy, Z.; Sambell, A.; Danaher, S.; Smith, D.: Investigation of transformer turns ratio between feed and slot of aperture coupled slot antenna by using S11 parameter. IEEE Trans. Antennas Propag., 61 (11) (2013), 57855787.Google Scholar
[4]Vilovic, I.; Burum, N.; Brailo, M.: Microstrip antenna design using neural networks optimized by PSO, in 21st Int. Conf. Applied Electromagnetics and Communications, Dubrovnik, 2013.Google Scholar
[5]Fortaki, T.; Khedrouche, D.; Bouttout, F.; Benghalia, A.: Numerical analysis of rectangular microstrip patch over ground plane with rectangular aperture. Commun. Numer. Methods Eng., 20 (6) (2004), 489500.Google Scholar
[6]Ho, M.H.; Hsu, C.I.: Circular-waveguide-fed microstrip patch antennas. Electron. Lett., 41 (22) (2005), 12021203.Google Scholar
[7]Ye, Y.; Yuan, J.; Su, K.: A volume-surface integral equation solver for radiation from microstrip antenna on anisotropic substrate. Int. J. Antennas Propag., 2012 (2012), 14.Google Scholar
[8]Bhagat, P.P.; Pujara, D.; Adhyaru, D.: Analysis and synthesis of microstrip patch antenna using artificial neural networks, in IEEE Asia-Pacific Conf. Antennas and Propagation, Singapore, 2012.CrossRefGoogle Scholar
[9]Bose, T.; Gupta, N.: Design of an aperture-coupled microstrip antenna using a hybrid neural network. Microw. Antennas Propag., IET, 6 (4) (2012), 470474.Google Scholar
[10]Mishra, R.; Patnaik, A.: Neurospectral computation for complex resonant frequency of microstrip resonators. IEEE Microw. Guid. Wave Lett., 9 (9) (1999), 351353.Google Scholar
[11]Mishra, R.; Patnaik, A.: Neurospectral computation for input impedance of rectangular microstrip antenna. Electron. Lett., 35 (20) (1999), 16911693.Google Scholar
[12]Bedra, S.; Benkouda, S.; Fortaki, T.: Analysis of a circular microstrip antenna on isotropic or uniaxially anisotropic substrate using neurospectral approach. COMPEL: Int. J. Comput. Math. Electr. Electron. Eng., 33 (1/2) (2013), 567580.Google Scholar
[13]Fortaki, T.; Benghalia, A.: Rigorous full-wave analysis of rectangular microstrip patches over ground planes with rectangular apertures in multilayered substrates that contain isotropic and uniaxial anisotropic materials. Microw. Opt. Technol. Lett., 41 (6) (2004), 496500.CrossRefGoogle Scholar
[14]Guney, K.; Yildiz, C.; Kaya, S.; Turkmen, M.: Artificial neural networks for calculating the characteristic impedance of air-suspended trapezoidal and rectangular-shaped microshield lines. J. Electromagn. Waves Appl., 20 (9) (2006), 11611174.Google Scholar
[15]Chopra, P.; Chandrasekhar, M.: Ann modeling for design of a matched low noise pHEMT amplifier for mobile application. J. Comput. Electron., 12 (4) (2013), 743751.CrossRefGoogle Scholar
[16]Kulshrestha, S.; Chheda, D.J.; Chakrabarty, S.; Jyoti, R.; Sharma, S.: Pole discontinuity removal using artificial neural networks for microstrip antenna design. Int. J. Electron., 98 (12) (2011), 17111720.CrossRefGoogle Scholar
[17]Mishra, R.K.; Patnaik, A.: Neural network-based CAD model for the design of square-patch antennas. IEEE Trans. Antennas Propag., 46 (12) (1998), 18901891.CrossRefGoogle Scholar
[18]Patnaik, A.; Mishra, R.K.: Ann techniques in microwave engineering. IEEE Microw. Mag., 1 (1) (2000), 5560.Google Scholar
[19]Kumar, K.; Gunasekaran, N.: Bandwidth enhancement of a notch square shaped microstrip patch antenna using neural network approach, in Int. Conf. Emerging Trends in Electrical and Computer Technology, Tamil Nadu, 2011.Google Scholar
[20]Guney, K.; Gultekin, S.: A comparative study of neural networks for input resistance computation of electrically thin and thick rectangular microstrip antennas. J. Commun. Technol. Electron., 52 (5) (2007), 483492.Google Scholar
[21]Haykin, S.: Neural Networks: a Comprehensive Foundation, Prentice-Hall PTR, Upper Saddle River, NJ, USA, 1994.Google Scholar
[22]Aksun, M.I.; Chuang, S.-L.; Lo, Y.T.: On slot-coupled microstrip antennas and their applications to CP operation-theory and experiment. IEEE Trans. Antennas Propag., 38 (8) (1990), 12241230.Google Scholar
[23]Chang, E.; Long, S.; Richards, W.: An experimental investigation of electrically thick rectangular microstrip antennas. IEEE Trans. Antennas Propag., 34 (6) (1986), 767772.Google Scholar
[24]Chew, W.C.; Liu, Q.: Resonance frequency of a rectangular microstrip patch. IEEE Trans. Antennas Propag., 36 (8) (1988), 10451056.Google Scholar
[25]Pozar, D.M.: PCAAD 3.0. Personal Computer Aided Antenna Design, Antenna Design Associates, Inc., Leverett, MA, USA, 1996.Google Scholar
[26]Aouabdia, N.; Belhadj-Tahar, N.-E.; Alquie, G.; Benabdelaziz, F.: Theoretical and experimental evaluation of superstrate effect on rectangular patch resonator parameters. Prog. Electromagn. Res. B, 32 ( 2011), 129147.Google Scholar
[27]Ansoft Corporation, Ansoft High Frequency Structure Simulator (HFSS) Version 13.0, Ansoft Corporation, Pittsburgh, PA, 2009.Google Scholar
[28]Messai, A.; Benkouda, S.; Amir, M.; Bedra, S.; Fortaki, T.: Analysis of high superconducting rectangular microstrip patches over ground planes with rectangular apertures in substrates containing anisotropic materials. Int. J. Antennas Propag., 2013 (2013), 17.Google Scholar
[29]Losada, V.; Boix, R.R.; Horno, M.: Resonant modes of circular microstrip patches over ground planes with circular apertures in multilayered substrates containing anisotropic and ferrite materials, IEEE Transact. Microw. Theory Tech., 48 (10) (2000), 17561762.Google Scholar