Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T01:51:41.696Z Has data issue: false hasContentIssue false

Multichannel interferometric SAR phase unwrapping using extended Kalman Smoother

Published online by Cambridge University Press:  23 April 2013

Davide Chirico*
Affiliation:
Dipartimento per le Tecnologie, Università di Napoli “Parthenope”, Centro Direzionale di Napoli, Isola C4, 80143 Naples, Italy Command and Control Department, MBDA-IT Missile Systems, Via Carciano 4-50, 60-70, 00131 Rome, Italy
Gilda Schirinzi
Affiliation:
Dipartimento per le Tecnologie, Università di Napoli “Parthenope”, Centro Direzionale di Napoli, Isola C4, 80143 Naples, Italy
*
Corresponding author: Davide Chirico Email: [email protected]

Abstract

Phase unwrapping (PU) is one of the key processing steps in reconstructing the digital elevation model (DEM) of a scene from interferometric synthetic aperture radar (InSAR) data. The PU problem entails the estimation of an absolute phase from observation of its noisy principal (wrapped) values. Recently, PU approaches based on Kalman filtering have proved their efficacy in tackling the PU problem even when strong discontinuities of the height profile and noisy data are involved. This paper presents a novel multichannel InSAR PU algorithm using several interferometric SAR images based on the extended Kalman filter. The proposed technique exploits the capability of the Kalman algorithm to simultaneously perform noise filtering, PU, and multi-sensor data fusion. The proposed method, even being a Bayesian estimator, optimally fuses height information coming from an additional maximum likelihood estimator (MLE) combining the benefits of both the Bayesian and the non-Bayesian approaches. The performance of the proposed algorithm has been tested on simulated interferometric images proving the effectiveness of the proposed method.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Massonet, D.; Feigl, K.L.: Radar interferometry and its application to changes in the earth's surface. Rev. Geophys., 36 (1998), 441500.Google Scholar
[2]Itoh, K.: Analysis of the phase unwrapping problem. Appl. Opt., 21 (14) (1982), 2470.Google Scholar
[3]Costantini, M.: A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens., 36 (1998), 813821.Google Scholar
[4]Loffeld, O.; Nies, H.; Knedlik, S.; Wang, Y.: Phase unwrapping for SAR interferometry – a data fusion approach by Kalman Filtering. IEEE Trans. Geosci. Remote Sens., 46 (2008), 4758.Google Scholar
[5]Pascazio, V.; Schirinzi, G.: Multifrequency InSAR height reconstruction through maximum likelihood estimation of local planes parameters. IEEE Trans. Image Process, 11 (2002), 14781489.Google Scholar
[6]Budillon, A.; Ferraiuolo, G.; Pascazio, V.; Schirinzi, G.: Multi-channel SAR interferometry via classical and Bayesian estimation techniques. EURASIP J. Appl. Signal Process. (EURASIP JASP), 2005 (20) (2005), 31803193.Google Scholar
[7]Ferretti, A.; Prati, C.; Rocca, F.: Multibaseline DEM reconstruction: the wavelet approach. IEEE Trans. Geosci. Remote. Sens., 37 (1999), 705715.Google Scholar
[8]Eineder, M.; Adam, N.: A maximum-likelihood estimator to simultaneously unwrap, eeocode, and fuse SAR interferograms from different viewing geometries into one digital elevation model. IEEE Trans. Geosci. Remote Sens., 43 (2005), 2436.Google Scholar
[9]Ferraiuolo, G.; Pascazio, V.; Schirinzi, G.: Maximum a posteriori estimation of height profiles in InSAR imaging. IEEE Geosci. Remote Sens. Lett., 1 (2004), 6670.Google Scholar
[10]Shabou, A.; Baselice, F.; Ferraioli, G.: Urban digital elevation model reconstruction using very high resolution multi-channel InSAR data. IEEE Trans. Geosci. Remote Sens., 50 (2012), 47484758.Google Scholar
[11]Yu, H.; Li, Z.; Bao, Z.: A cluster-analysis-based efficient multibaseline phase-unwrapping algorithm. IEEE Trans. Geosci. Remote Sens., 49 (2011), 478487.CrossRefGoogle Scholar
[12]Dai, Z.; Zha, X.: An accurate phase unwrapping algorithm based on reliability sorting and residue mask. IEEE Geosci. Remote Sens. Letters, 9 (2012), 219223.Google Scholar
[13]Chirico, D.; Schirinzi, G.: InSAR phase unwrapping using nonlinear Kalman Smoother. in IEEE Int. Geoscicience and Remote Sensing Symp., IGARSS'2012, (2012), 56105613.Google Scholar
[14]Bamler, R.; Hartl, P.: Synthetic aperture radar interferometry. Inverse Probl., 14 (1998), R1R54.Google Scholar
[15]Ghiglia, D.C.; Pritt, M.D.: Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software. Wiley, New York, 1998.Google Scholar