Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T12:13:25.771Z Has data issue: false hasContentIssue false

The multi-antenna code multiplexing front-end: theory and performance

Published online by Cambridge University Press:  07 January 2011

Matthieu Gautier*
Affiliation:
Université de Lyon, INRIA, INSA-Lyon, CITI, F-69621 Villeurbanne, France. Orange Labs, 28, Chemin du Vieux Chêne, 38243 Meylan, France.
Guillaume Villemaud
Affiliation:
Université de Lyon, INRIA, INSA-Lyon, CITI, F-69621 Villeurbanne, France.
Ioan Burciu
Affiliation:
Université de Lyon, INRIA, INSA-Lyon, CITI, F-69621 Villeurbanne, France. Orange Labs, 28, Chemin du Vieux Chêne, 38243 Meylan, France.
*
Corresponding author: M. Gautier Email: [email protected]

Abstract

In this paper, we address the architecture of a multi-antenna receiver and we aim at reducing the complexity of the analog front-end. To this end, an innovative architecture is introduced based on code multiplexing. This architecture uses the direct sequence spread spectrum technique in order to multiplex the different antennas contributions through a single In-phase/Quadrature (IQ) demodulator. Simulation and measurement results show that the bit error rate does not increase so much with the multiplexing in both Gaussian and fading environments and with strong radiofrequency (RF) defaults conditions. The complexity evaluation shows that the proposed architecture significantly reduces the chip area and the power consumption of the front-end.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Fettweis, G.: Current frontiers in wireless communications: fast & green & dirty, in Keynote Presentation of IEEE Wireless Communication and Networking Conf. (WCNC09), 2009.Google Scholar
[2]Winters, J.H.: Optimum combining in digital mobile radio with cochannel interference. IEEE J. Sel. Areas Commun., 2 (4) ( 1984), 528539.Google Scholar
[3]Kaiser, T.; Bourdoux, A.; Boche, H.; Rodriguez Fonollosa, J.; Bach Andersen, J.; Utschick, W.: Smart Antennas: State of the Art, Eurasip Book Series on Signal Processing & Communications, Hindawi Publishing Corporation, 2005.CrossRefGoogle Scholar
[4]Tsurumi, H.; Suzuki, Y.: Broadband RF stage architecture for software-defined radio inhandheld terminal applications. IEEE Commun. Mag., 37 (2) ( 1999), 9095. DOI: 10.1109/35.747255.Google Scholar
[5]Rafati, H.; Razavi, B.: A receiver architecture for dual-antenna systems. IEEE J. Solid-State Circuits, 42 (6) ( 2007), 12911299. DOI: 10.1109/JSSC.2007.897150.Google Scholar
[6]Paramesh, J.; Bishop, R.; Soumyanath, K.; Allstot, D.J.: A four antenna receiver in 90-nm CMOS for beamforming and spatial diversity. IEEE J. Solid-State Circuits, 40 (12) (2005), 25152524. DOI: 10.1109/JSSC.2005.857416.Google Scholar
[7]Tzeng, F.; Jahanian, A.; Heydari, P.: A universal code-modulated path-sharing multi-antenna receiver, in Proc. of IEEE Wireless Communication and Networking Conf. (WCNC08), 2008, DOI: 10.1109/WCNC.2008.114.CrossRefGoogle Scholar
[8]Tzeng, F.; Jahanian, A.; Pi, D.; Heydari, P.: CMOS code-modulated path-sharing multi-antenna receiver front-end for spatial multiplexing, spatial diversity and beamforming, in Proc. of IEEE Radio Frequency Integrated Circuits Symp. (RFIC 2008), 2008, DOI: 10.1109/RFIC.2008.4561448.CrossRefGoogle Scholar
[9]Gautier, M.; Burciu, I.; Villemaud, G.: New antenna diversity front-end using code multiplexing, in Proc. of European Conf. on Antennas and Propagation (EuCAP09), 2009.Google Scholar
[10]Gautier, M.; Morlat, P.-F.; Villemaud, G.: IQ imbalance reduction in a SMI multi-antenna receiver by using a code multiplexing front-end, in Proc. of IEEE Vehicular Technology Conf. (VTC09-Spring), 2009.Google Scholar
[11]Gautier, M.; Villemaud, G.: Low complexity antenna diversity front-end: Use of code multiplexing, in Proc. of IEEE Wireless Communication and Networking Conf. (WCNC09), 2009.CrossRefGoogle Scholar
[12]Morlat, P.-F.; Gallon, X.; Villemaud, G.: Measured performances of a SIMO multi-standard receiver, in Proc. of European Conf. on Antennas and Propagation (EUCAP07), 2007.CrossRefGoogle Scholar
[13]Proakis, J.G.: Digital Communications, McGraw-Hill International editions, 3rd ed., New York, USA, 1995.Google Scholar
[14]Schulze, H.; Lueders, C.: Theory and Applications of OFDM and CDMA: Wideband Wireless Communications, Wiley, 2005.Google Scholar
[15]IEEE Std 802.11: Wireless MAN medium access control and physical specification, 1999.Google Scholar
[17]Traverso, S.; Ariaudo, M.; Fijalkow, I.; Gautier, J.-L.; Lereau, C.: Decision directed channel estimation and high I/Q imbalance compensation in OFDM receivers. IEEE Trans. Commun., 57 (5) (2008), 12461249. DOI: 10.1109/TCOMM.2009.05.070161.Google Scholar
[18]Gautier, M.; Burciu, I.; Villemaud, G.: PAPR analysis for a code multiplexing multi-antenna receiver, in Proc. of French GRETSI Conf. on Image and Signal processing (GRETSI09), 2009.Google Scholar
[19]Van Nee, R.; Prasad, R.: OFDM for Wireless Multimedia Communications, Artech House Inc., Norwood, MA, USA, 2000.Google Scholar
[20]Gupta, I.J.: SMI adaptive antenna arrays for weak interfering signals. IEEE Trans. Antennas Propag., 34 (10) (1986), 12371242.CrossRefGoogle Scholar
[21]Sarkar, T.K.; Wicks, M.C.; Salazar-Palma, M.; Bonneau, R.J.: Smart Antennas, Wiley Series in Microwave and Optical Engineering, Wiley, 2003.CrossRefGoogle Scholar
[22]Liao, C.-H.; Chuang, H.-R.: A 5.7-GHz 0.18-µm CMOS gain-controlled differential LNA with current reuse for WLAN receiver. IEEE Microw. Wirel. Compon. Lett., 13 (12) (2003), 526528.Google Scholar
[23]System drivers: International Technology Roadmap for Semiconductors, 2007.Google Scholar