Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T04:58:35.290Z Has data issue: false hasContentIssue false

Microstrip antennas on 3D-printed magneto-dielectric substrates: fabrication and efficiency study

Published online by Cambridge University Press:  23 February 2023

Constantine Kakoyiannis*
Affiliation:
Department of Antennas & EM Modeling, IMST GmbH, Carl-Friedrich-Gauss-Str. 2, 47475 Kamp-Lintfort, Germany
Jakub Sorocki
Affiliation:
Institute of Electronics, AGH University of Science & Technology, 30 A. Mickiewicza Av., 30-059 Krakow, Poland
Ilona Piekarz
Affiliation:
Institute of Electronics, AGH University of Science & Technology, 30 A. Mickiewicza Av., 30-059 Krakow, Poland
Matthias Geissler
Affiliation:
Department of Antennas & EM Modeling, IMST GmbH, Carl-Friedrich-Gauss-Str. 2, 47475 Kamp-Lintfort, Germany
*
Author for correspondence: Constantine Kakoyiannis, E-mail: [email protected]

Abstract

Magneto-dielectric antennas (MDAs) provide small sizes, enhanced bandwidths, and frequency/polarization agility. We describe the fabrication and efficiency characterization at 0.4–0.8 GHz of five microstrip MDAs, whose gradually thicker substrates were 3D-printed using an off-the-shelf polylactic acid (PLA) filament doped with ferromagnetic particles. It was experimentally discovered that efficiency increases monotonically from 12% (−9.2 dB) to 37% (−4.3 dB) as substrate thickness goes from 1.6 to 4.3 mm; the rate is faster than expected for microstrip antennas. Numerical analysis indicated that the apparent magnetic loss tangent of the MD substrate experiences a threefold decrease as the 3D printer deposits more layers of iron-doped PLA. The MDAs exhibit radiation quality factors that are 3.7–7.2 times better than the dielectric counterparts. Moreover, a simple optimization of ground plane size could increase efficiency to 55% (−2.6 dB). The reduction in magnetic loss is attributed to a reduction in eddy current loss due to the separation of agglomerate iron particles. Therefore, despite the inherently lossy material used, the potential of 3D-printed MD substrates in providing acceptable antenna efficiencies is demonstrated together with unprecedented design freedom and fabrication flexibility.

Type
Antenna Design, Modelling and Measurements
Copyright
© The Author(s), 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreou, E, Zervos, T, Alexandridis, AA and Fikioris, G (2019) Magneto-dielectric materials in antenna design: exploring the potentials for reconfigurability. IEEE Antennas and Propagation Magazine 61, 2940.10.1109/MAP.2018.2883029CrossRefGoogle Scholar
Hansen, RC and Burke, M (2000) Antennas with magneto-dielectrics. Microwave and Optical Technology Letters 26, 7578.10.1002/1098-2760(20000720)26:2<75::AID-MOP3>3.0.CO;2-W3.0.CO;2-W>CrossRefGoogle Scholar
Karilainen, AO, Ikonen, PMT, Simovski, CR and Tretyakov, SA (2011) Choosing dielectric or magnetic material to optimize the bandwidth of miniaturized resonant antennas. IEEE Transactions on Antennas and Propagation 59, 39913998.10.1109/TAP.2011.2164170CrossRefGoogle Scholar
Pacini, A, Costanzo, A and Masotti, D (2015) A theoretical and numerical approach for selecting miniaturized antenna topologies on magneto-dielectric substrates. International Journal of Microwave and Wireless Technologies 7, 369377.10.1017/S1759078715000859CrossRefGoogle Scholar
Ikonen, PMT, Rozanov, KN, Osipov, AV, Alitalo, P and Tretyakov, SA (2006) Magnetodielectric substrates in antenna miniaturization: potential and limitations. IEEE Transactions on Antennas and Propagation 54, 33913399.10.1109/TAP.2006.884303CrossRefGoogle Scholar
Bae, S, Hong, YK and Lyle, A (2008) Effect of Ni-Zn ferrite on bandwidth and radiation efficiency of embedded antenna for mobile phone. Journal of Applied Physics 103, 07E929.10.1063/1.2838619CrossRefGoogle Scholar
Yang, G-M, Xing, X, Daigle, A, Liu, M, Obi, O, Stoute, S, Naishadham, K and Sun, NX (2009) Tunable miniaturized patch antennas with self-biased multilayer magnetic films. IEEE Transactions on Antennas and Propagation 57, 21902193.10.1109/TAP.2009.2021972CrossRefGoogle Scholar
Grange, F, Garello, K, Benevent, E, Bories, S, Viala, B, Delaveaud, C and Mahdjoubi, K (2009) Investigation of magneto-dielectric thin films as substrates for patch antennas. 3rd European Conference on Antennas and Propagation (EuCAP’09), Berlin, Germany.Google Scholar
Karilainen, AO, Ikonen, PMT, Simovski, CR, Tretyakov, SA, Lagarkov, AN, Maklakov, SA, Rozanov, KN and Starostenko, SN (2011) Experimental studies on antenna miniaturisation using magneto-dielectric materials. IET Microwaves, Antennas & Propagation 5, 495502.10.1049/iet-map.2010.0212CrossRefGoogle Scholar
Nour, B and Breinbjerg, O (2011) Investigation of bandwidth, efficiency, and quality factor for circular patch antennas with magneto-dielectric substrate. International Conference on Electromagnetics Advanced Applications (ICEAA’11), Torino, Italy.10.1109/ICEAA.2011.6046449CrossRefGoogle Scholar
Aldrigo, M, Costanzo, A, Masotti, D, Baldisserri, C, Dumitru, I and Galassi, C (2013) Numerical and experimental characterization of a button-shaped miniaturized UHF antenna on magneto-dielectric substrate. International Journal of Microwave and Wireless Technologies 5, 231239.10.1017/S1759078713000445CrossRefGoogle Scholar
Kakoyiannis, CG, Zervos, T, Fikioris, G and Pissas, M (2014) Efficiency measurements of multiband and circularly polarized magneto-dielectric antennas by the equivalent-circuit Wheeler cap. The 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague.10.1109/EuCAP.2014.6901769CrossRefGoogle Scholar
Varouti, E, Rongas, DK, Manios, E, Kakoyiannis, CG, Zervos, T, Pissas, M and Fikioris, G (2014) Properties of aluminum-substituted YIG with applications in tunable notched UWB antennas. Loughborough Antennas and Propagation Conference, Loughborough, UK.10.1109/LAPC.2014.6996494CrossRefGoogle Scholar
Parsons, PE, Larimore, ZJ, Lu, A and Mirotznik, MS (2016) Miniaturization of an additively manufactured microstrip patch antenna using magnetodielectrics. 2016 IEEE International Symposium on Antennas and Propagation (APSURSI’16), Fajardo, Puerto Rico.10.1109/APS.2016.7696118CrossRefGoogle Scholar
Rongas, DK, Kakoyiannis, CG and Fikioris, G (2017) Towards 600 MHz LTE smartphones via tunable magnetodielectric printed inverted-F antennas. 2017 Int'l Workshop Antenna Technology (iWAT’17), Athens, Greece.10.1109/IWAT.2017.7915331CrossRefGoogle Scholar
Andreou, E, Alexandridis, AA and Fikioris, G (2018) Experimental evaluation of patch antennas with ferrite loaded substrate at 5 GHz frequency band. 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK.10.1049/cp.2018.1495CrossRefGoogle Scholar
Al-Sehemi, A, Al-Ghamdi, A, Dishovsky, N, Atanasov, N and Atanasova, G (2019) Miniaturized wearable antennas with improved radiation efficiency using magneto-dielectric composites. IETE Journal of Research 68, 11571167.10.1080/03772063.2019.1643264CrossRefGoogle Scholar
Wang, Y, Castles, F and Grant, PS (2015) 3D printing of NiZn ferrite/ABS magnetic composites for electromagnetic devices. MRS Online Proceedings Library Archive 1788, 2935.10.1557/opl.2015.661CrossRefGoogle Scholar
Arbaoui, Y, Agaciak, P, Chevalier, A, Laur, V, Maalouf, A, Ville, J, Roquefort, P, Aubry, T and Queffelec, P (2017) 3D printed ferromagnetic composites for microwave applications. J. Materials Science 52, 49884996.Google Scholar
Badin, AV, Kuleshov, GE, Zhuravlev, VA, Dunaevskii, GE, Simonova, KV, Dorozhkin, KV and Zhakupov, SN (2019) Ferromagnetic resonance in 3D-printing hexagonal ferrite BaFe12O19 composite at the EHF frequency range. 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France.10.1109/IRMMW-THz.2019.8873814CrossRefGoogle Scholar
Sorocki, J, Piekarz, I, Slomian, I, Gruszczynski, S and Wincza, K (2018) Realization of compact patch antennas on magneto-dielectric substrate using 3D printing technology with iron-enhanced PLA filament. International Conference on Electromagnetics in Advanced Applications (ICEAA’18), Cartagena de Indias, Colombia.10.1109/ICEAA.2018.8520472CrossRefGoogle Scholar
Black Magic 3D (May 2018) Magnetic PLA 3D printing filament. [Online]. Available at: https://www.blackmagic3d.com/Magnetic-PLA-Filament-p/bm3d-175-mag.htm.Google Scholar
Kuznetsov, VE, Solonin, AN, Urzhumtsev, OD, Schilling, R and Tavitov, AG (2018) Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process. MDPI Polymers 10, 313.10.3390/polym10030313CrossRefGoogle ScholarPubMed
Kakoyiannis, C (2013) Hybrid antenna efficiency measurements in fixed-geometry Wheeler caps by wideband Q-factor estimation. Loughborough Antennas and Propagation Conference, Loughborough, UK.10.1109/LAPC.2013.6711955CrossRefGoogle Scholar
Kakoyiannis, C (2014) Post-processing accuracy enhancement of the improved Wheeler cap for wideband antenna efficiency measurements. 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands.10.1109/EuCAP.2014.6901762CrossRefGoogle Scholar
Kakoyiannis, C (2017) On the capacity of Wheeler cap measurements for detecting very low antenna efficiency levels. 2017 International Workshop on Antenna Technology (iWAT’17), Athens, Greece.10.1109/IWAT.2017.7915317CrossRefGoogle Scholar
Yaghjian, AD (2006) Improved formulas for the Q of antennas with highly lossy dispersive materials. IEEE Antennas and Wireless Propagation Letters 5, 365369.10.1109/LAWP.2006.881913CrossRefGoogle Scholar
Balanis, CA (1997) Antenna Theory: Analysis and Design, 2nd Edn. New York, NY: Wiley Interscience, pp. 760762.Google Scholar
Garg, R, Bhartia, P, Bahl, I and Ittipiboon, A (2001) Microstrip Antenna Design Handbook. Norwood, MA: Artech House, pp. 279287.Google Scholar
Milligan, TA (2005) Modern Antenna Design, 2nd Edn. Hoboken, NJ: Wiley Interscience-IEEE Press, pp. 285335.10.1002/0471720615.ch6CrossRefGoogle Scholar
Jackson, DR (2007) Microstrip antennas. In Volakis, JL (ed.), Antenna Engineering Handbook, 4th Edn. New York: McGraw-Hill, pp. 7-17-29.Google Scholar
Shimin, D (1986) A new method for measuring dielectric constant using the resonant frequency of a patch antenna. IEEE Transactions on Microwave Theory and Techniques MTT-34, 923931.10.1109/TMTT.1986.1133472CrossRefGoogle Scholar
Felício, JM, Fernandes, CA and Costa, JR (2016) Complex permittivity and anisotropy measurement of 3D-printed PLA at microwaves and millimeter-waves. 22nd International Conference on Applied Electromagnetics and Communications (ICECOM’16), Dubrovnik, Croatia.10.1109/ICECom.2016.7843900CrossRefGoogle Scholar
Boussatour, G, Cresson, P-Y, Genestie, B, Joly, N and Lasri, T (2018) Dielectric characterization of polylactic acid substrate in the frequency band 0.5–67 GHz. IEEE Microwave and Wireless Components Letters 28, 374376.10.1109/LMWC.2018.2812642CrossRefGoogle Scholar
Wien, A (2020) EMPIRE XPU manual version 8.03. IMST GmbH, Kamp-Lintfort, Germany. Available at: empire.de/wp-content/uploads/sites/3/2021/02/EMPIRE-Manual.pdf.Google Scholar
Goldman, A (1999) Handbook of Modern Ferromagnetic Materials. New York: Springer Science+ Business Media, chapters 3, 6, and 10.10.1007/978-1-4615-4917-8CrossRefGoogle Scholar
Liu, X, Wu, P, Wang, G, Qiao, L, Wang, T and Li, F (2020) High permeability and low loss flaky carbonyl iron soft magnetic composite for 5G applications. Journal of Applied Physics 128, 244905.10.1063/5.0033692CrossRefGoogle Scholar
Hanemann, T, Syperek, D and Nötzel, D (2020) 3D printing of ABS barium ferrite composites. Materials 13, 1481.10.3390/ma13061481CrossRefGoogle ScholarPubMed
Wei, X, Liu, Y, Zhao, D, Mao, X, Jiang, W and Ge, SS (2020) Net-shaped barium and strontium ferrites by 3D printing with enhanced magnetic performance from milled powders. Journal of Magnetism and Magnetic Materials 493, 165664.10.1016/j.jmmm.2019.165664CrossRefGoogle Scholar