Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T08:48:56.597Z Has data issue: false hasContentIssue false

Lithographical bending control method for a piezoelectric actuator

Published online by Cambridge University Press:  06 March 2009

Tamio Ikehashi*
Affiliation:
Toshiba Corporation, Semiconductor Company, Center for Semiconductor R&D Yokohama, Japan.
Etsuji Ogawa
Affiliation:
Toshiba Corporation, Semiconductor Company, Center for Semiconductor R&D Yokohama, Japan.
Hiroaki Yamazaki
Affiliation:
Toshiba Corporation, Semiconductor Company, Center for Semiconductor R&D Yokohama, Japan.
Tatsuya Ohguro
Affiliation:
Toshiba Corporation, Semiconductor Company, Center for Semiconductor R&D Yokohama, Japan.
*
Corresponding author: T. Ikehashi E-mail: [email protected]

Abstract

This paper presents the theoretical formulation of a lithographical bending control (LBC) method that uses lithographical degrees of freedom to control the bending of a multilayered beam. LBC is applied to a piezoelectric actuator that uses PZT as the piezoelectric material. The theoretical model is compared with measurements using a weakly fixed bridge structure suited for curvature measurement.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Lee, H.-C.; Park, J.-H.; Park, Y.-H.: Development of shunt type ohmic RF MEMS switches actuated by piezoelectric cantilever. Sensors Actuators A, 136 (2007), 282290.CrossRefGoogle Scholar
[2]Kawakubo, T.; Nagano, T.; Nishigaki, M.; Itaya, K.: High reproducibility and reliability of piezoelectric MEMS tunable capacitors for reconfigurable RF front-end. IEDM Dig., (2007), 435438.Google Scholar
[3]Klaasse, G.; Puers, B.; Tilmans, H.A.C.: Piezoelectric actuation for application in RF-MEMS switches. Proc. SPIE, 5455 (2004), 174180.CrossRefGoogle Scholar
[4]Ikehashi, T.; Ohguro, T.; Ogawa, E.; Yamazaki, H.; Kojima, K.; Matsuo, M.; Ishimaru, K.; Ishiuchi, H.: A robust RF MEMS variable capacitor with piezoelectric and electrostatic actuation. 2006 IEEE MTT-S Int. Microwave Symp. Dig., (2006), 3942.CrossRefGoogle Scholar
[5]Ikehashi, T.; Ogawa, E.; Yamazaki, H.; Ohguro, T.: A 3V operation RF-MEMS variable capacitor using piezoelectric and electrostatic actuation with lithographical bending control, 2007 Transducers Dig., (2007), 400403Google Scholar
[6]Smits, J.G.; Choi, W.-S.: The constituent equations of piezoelectric heterogeneous bimorphs. IEEE Trans. Ultrasonics, Ferroelectrics Freq. Control, 38, (1991), 256270CrossRefGoogle ScholarPubMed
[7]DeVoe, D.L.; Pisano, A.P.: Modeling and optimal design of piezoelectric cantilevermicroactuators. J. Microelectromech. Sys., 6, (1997), 266270CrossRefGoogle Scholar
[8]Tilmans, H.A.C.: Micro-mechanical Sensors Using Encapsulated Built-in Resonant Strain Gauges. PhD thesis, University of Twente, 1993.Google Scholar
[9]Weinberg, M.S.: Working equations for piezoelectric actuators and sensors. J. Microelectromech. Sys., 8, (1999), 529533.CrossRefGoogle Scholar
[10]Senturia, S.D.: Microsystem Design, 4th ed., Kluwer Academic Publishers, Dordrecht, (2002), 216Google Scholar
[11]Kuijk, E.K.: A precision reference voltage source. IEEE J. Solid State Circuit, SC-8, 3, (1973)Google Scholar