No CrossRef data available.
Published online by Cambridge University Press: 20 May 2015
Demands for very high-speed wireless communication access is rapidly growing with respect to the increasing data rates for the use of rich multimedia content in various applications of defense, enterprise, industrial, and public domains. To serve these gigabit fidelity (Gi-Fi) uses for various wireless applications, millimeter wave (MmW) wireless technology with huge bandwidth in licensed/unlicensed bands is triggering boundless avenues. In this research, the concept of substrate-integrated waveguide (SIW) and exponentially tapered slot (ETS) antenna are used together design a high-gain, efficient planar dielectric-loaded antenna for MmW-based Gi-Fi wireless communications using unlicensed 60 GHz band in the MmW family. The SIW is used to feed the antenna and a dielectric is utilized increasing the gain. The dielectric-loaded ETS antenna and compact SIW feed are fabricated on a single substrate, resulting in low cost and easy fabrication utilizing printed circuit board process. The measured gain of single-element antenna is 11.4 dB, with radiation efficiency of 96.84% at 60 GHz. Then indoor radio wave propagation studies are carried out using elliptically dielectric-loaded ETS antenna with radio frequency measurement equipment to measure and model propagation channels at 60 GHz. The attained simulations are compared with the experimental results.