Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T11:12:57.446Z Has data issue: false hasContentIssue false

Including orbital fluctuations in the noise spectrum of autonomous circuits

Published online by Cambridge University Press:  18 January 2011

Fabio L. Traversa
Affiliation:
Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
Fabrizio Bonani*
Affiliation:
Dipartimento di Elettronica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy. Phone: +39 011 5644140.
*
Corresponding author: F. Bonani Email: [email protected]

Abstract

We discuss the impact of orbital fluctuations on the noise spectrum of a free-running oscillator, exploiting a rigorous nonlinear perturbative analysis based on the Floquet theory, and providing evidence of its relevance for high-Q oscillators.

Type
Research Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Berstein, I.L.: On fluctuations in the neighborhood of periodic motion of an auto-oscillating system. Doklad. Akad. Nauk., 20 (1938), 11.Google Scholar
[2]Hafner, E.: The effect of noise in oscillators. Proc. IEEE, 54 (1966), 179198.CrossRefGoogle Scholar
[3]Lax, M.: Classical noise. V. Noise in self-sustained oscillators. Phys. Rev., 160 (1967), 290306.CrossRefGoogle Scholar
[4]Kurokawa, K.: Noise in synchronized oscillators. IEEE Trans. Microw. Theory Tech., 16 (1968), 234240.CrossRefGoogle Scholar
[5]Hajimiri, A.; Lee, T.H.: The Design of Low Noise Oscillators, Kluwer Academic Publishers, Dordrect, 1999.Google Scholar
[6]Demir, A.; Mehrotra, A.; Roychowdhury, J.: Phase noise in oscillators: a unifying theory and numerical methods for characterization. IEEE Trans. Circ. Syst. I: Fund. Theory and Appl., 47 (2000), 655674.CrossRefGoogle Scholar
[7]Traversa, F.L.; Bonani, F.: Oscillator noise: a nonlinear perturbative theory including orbital fluctuations and phase-orbital correlation. IEEE Trans. Circ. Syst. I: Regular Papers (2011), submitted.Google Scholar
[8]Kaertner, F.X.: Determination of the correlation spectrum of oscillators with low noise. IEEE Trans. Microw. Theory Tech., 37 (1989), 90101.CrossRefGoogle Scholar
[9]Traversa, F.L.; Bonani, F.; Donati Guerrieri, S.: A frequency-domain approach to the analysis of stability and bifurcations in nonlinear systems described by differential-algebraic equations. Int. J. Circuit Theory Appl., 36 (2008), 421439.CrossRefGoogle Scholar
[10]Traversa, F.L.; Bonani, F.: Oscillator noise: a rigorous analysis including orbital fluctuations. Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMIC), Göteborg, Sweden, 2010.Google Scholar
[11]Traversa, F.L.; Bonani, F.: Frequency domain evaluation of the adjoint Floquet eigenvectors for oscillator noise characterization. IET Circuits, Devices Syst. (DOI: 10.1049/iet-cds.2010.0138), (2011), to appearCrossRefGoogle Scholar
[12]Dec, A.; Toth, L.; Suyama, K.: Noise analysis of a class of oscillators. IEEE Trans. Circuits Syst., 45 (1998), 757760.Google Scholar
[13]Brambilla, A.; Gruosso, G.; and Storti Gajani, G.: Determination of Floquet exponents for small-signal analysis of nonlinear periodic circuits. IEEE Trans. Computer-Aided Design Integr. Circuits Syst., 28 (2009), 447451.CrossRefGoogle Scholar
[14] MATLAB, The Mathworks, Natick, MA, USA. www.matlab.comGoogle Scholar
[15]Sweet, A.A.: Designing Bipolar Transistor Radio Frequency Integrated Circuits, Artech House, Norwood, 2008.Google Scholar
[16]Demir, A.: Floquet theory and non-linear perturbation analysis for oscillators with differential-algebraic equations. Int. J. Circ. Theory Appl., 28 (2000), 163185.Google Scholar
[17]Brambilla, A.; Gruosso, G.; Redaelli, M.A.; Storti Gajani, G.; Caviglia, D.D.: Improved small signal analysis for circuits working in periodic steady state. IEEE Trans. Circ. Syst. I: Regular Papers, 57 (2010), 427437.Google Scholar